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The pivot algorithm is a dynamic Monte Carlo algorithm, first invented by Lal, 
which generates self-avoiding walks (SAWs) in a canonical (fixed-N) ensemble 
with free endpoints (here N is the number of steps in the walk). We find that the 
pivot algorithm is extraordinarily efficient: one "effectively independent" sample 
can be produced in a computer time of order N. This paper is a comprehensive 
study of the pivot algorithm, including: a heuristic and numerical analysis of the 
acceptance fraction and autocorrelation time; an exact analysis of the pivot 
algorithm for ordinary random walk; a discussion of data structures and com- 
putational complexity; a rigorous proof of ergodicity; and numerical results on 
self-avoiding walks in two and three dimensions. Our estimates for critical 
exponents are v = 0.7496 _+ 0.0007 in d = 2 and v = 0.592 + 0.003 in d = 3 (95 % 
confidence limits), based on SAWs of lengths 200 ~< N~< 10000 and 200 ~< N~< 
3000, respectively. 

KEY WORDS: Self-avoiding walk; polymer; Monte Carlo; pivot algorithm; 
critical exponent. 

1. I N T R O D U C T I O N  

The self-avoiding walk (SAW) is a wel l -known lattice model  of a polymer  

molecule with excluded volume. (t-3) Its equivalence to the N - - 0  limit of the 

N-vector model  ~4 9) has also made it an  impor t an t  test case in the theory of 
critical phenomena .  

Monte  Carlo  studies of the SAW go back to the early 1950s, (1~ and  in 
recent years several improved Mon te  Carlo algori thms for the SAW have 
been devised. (11 13) In  this paper  we study yet another  algori thm, which, 

though not  new, turns  out  to be extraordinar i ly  efficient. This algori thm, 

which we call the p ivo t  a lgori thm,  was invented in 1969 by Lal, (14) used 
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in the mid-1970s by Olaj and Pelinka, (is) and reinvented in 1985 by 
MacDonald et aL (16"17) Continuum analogues of the pivot algorithm have 
been used by Stellman and Gans (ls'19) and Freire and Horta./2~ Except for 
these few references, however, the pivot algorithm seems to have rested in 
oblivion. This is a shame, for, as we shall demonstrate, the pivot algorithm 
appears to be the most efficient algorithm yet invented for estimating the 
critical exponent v in the self-avoiding walk. 

The pivot algorithm is a dynamic Monte Carlo algorithm, which 
generates SAWs in a canonical ensemble (fixed number of steps N) with free 
endpoints. The elementary move of the algorithm is as follows: A site on the 
walk is chosen at random and used as a pivot point; a random symmetry 
operation of the lattice (e.g., rotation or reflection) is applied to the part of 
the walk subsequent to the pivot point, using the pivot point as the origin. 
The resulting walk is accepted if it is self-avoiding; otherwise, it is rejected, 
and the old walk is counted once again in the sample. It is not hard to 
prove that this algorithm is ergodic (see Section 3.5) and satisfies detailed 
balance for the standard equal-weight SAW probability distribution. 

At first thought this seems to be a terrible algorithm: for N large, 
nearly all the proposed moves will get rejected. In fact, this latter statement 
is true, but the hasty conclusion drawn from it is radically false! The accep- 
tance fraction f does indeed go to zero as N--* 0% roughly like N-P; 
numerically, we find that in two dimensions the exponent p is around 0.19. 
But this rfieans that roughly once every N p moves one gets an acceptance. 
And the pivot moves are very radical: one might surmise that after very few 
accepted moves (say, five or ten) the SAW will have reached an "essentially 
new" configuration. One conjectures, therefore, that the autocorrelation 
time r of the pivot algorithm behaves as ~ N p. Things are in fact somewhat 
more subtle (see Sections 3.2 and 3.3), but roughly speaking (and modulo a 
possible logarithm) this conjecture appears to be true. On the other hand, 
a careful analysis of the computational complexity of the pivot algorithm 
(Section 3.4) shows that one accepted move can be produced in a computer 
time of order N. Combining these two facts, we conclude that one "effec- 
tively independent" sample (at least as regards global observables) can be 
produced in a computer time of order N (or perhaps Nlog  N). This is a 
factor ~ N  more efficient than the alternative algorithms due to Redner 
and Reynolds (11) and Berretti and Sokal. (13) Indeed, this order of efficiency 
cannot be surpassed by any algorithm that computes each site on 
successive SAWs, for it takes a time of order N simply to write down an 
N-step walk! 3 

3 A personal aside: One of the authors (A.D.S.) was familiar with the Lal paper as early as the 
fall of 1982, but rejected the algorithm out of hand on the ground that the acceptance 
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The plan of this paper is as follows: In Section 2 we give a brief review 
of the self-avoiding walk (SAW) and dynamic Monte Carlo methods, and 
set the notation. The heart of the paper is Section 3: in successive sub- 
sections we define the pivot algorithm and some of its variants; give a 
heuristic analysis of its acceptance fraction and autocorrelation time; carry 
out an exact analysis of the pivot algorithm for the ordinary random walk; 
discuss the data structures needed and analyze the computational com- 
plexity; prove rigorously the ergodicity of the algorithm; and discuss 
questions relating to initialization. In Section 4 we present numerical 
results using the pivot algorithm on two-dimensional SAW's of lengths 
200 ~< N~< 10,000. (This latter length is probably a world record, if anyone 
cares.) We also present preliminary results on three-dimensional SAWs of 
lengths 200 ~< N ~< 3000. These simulations used a total of roughly 300 and 
120hr CPU time, respectively, on a Cyber 170-730 computer. Our 
estimates for v are 0.7496_+0.0007 in d = 2 ,  and 0.592+0.003 in d =  3 
(95% confidence limits). In Section 5 we discuss prospects for the future, 
including a test of the hyperscaling relation dv = 2 z J  4 - 7 in dimension d = 3 
and a search for logarithmic violation of hyperscaling in dimension d =  4. 
In Appendix A we present an exact-enumeration/series-extrapolation 
analysis of the acceptance fraction. In Appendix B we prove some bounds 
on the eigenvalues of the pivot algorithm for ordinary random walk. In 
Appendix C we discuss our statistical methods. 

2. BACKGROUND AND NOTATION 

2.1. The Self-Avoiding Walk (SAW):  A Review 

In this section we review briefly the basic facts and conjectures about 
the SAW that will be used in the remainder of the paper. Let 50 be some 
regular d-dimensional lattice. Then an N-step self-avoiding walk (SAW) co 
on 50 is a sequence of distinct points COo, CO, ..... CON in 5 ~ such that each 
point is a nearest neighbor of its predecessor. For simplicity, we restrict 

fraction would be tiny for large N. In June 1984 A.D.S. met Freire in Madrid, and made the 
same argument  to him. In May 1985, the other author  (N.M.) proposed the pivot algorithm 
to A.D.S. in discussion after a lecture on Monte  Carlo methods  for the SAW. The response 
of A.D.S. was "Oh, yes, I know that algorithm, it's a terrible algorithm because...." N.M. 
forced A.D.S. to take a second look, and within days we convinced ourselves heuristically 
that the acceptance fraction would go to zero only as a very weak power law (see 
Section 3.2). We then started work on this paper in earnest. A.D.S. wants to take this 
opportunity to atone publicly for his sins, and in particular to apologize to Juan Freire for 
having criticized his work unjustly. 

822/50/1-2-8 
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attention to the simple (hyper)cubic lattice 7/d; similar ideas would apply to 
other regular lattices. We assume all walks to begin at the origin (a)o = 0) 
unless stated otherwise. 

Let 5e N [respectively, SeN(X)] be the set of N-step SAWs on Z a starting 
at the origin and ending anywhere [respectively, ending at x];  and let eu 
[respectively, CN(X)] be the cardinality of 5e u [respectively, of 5aN(X)]. 
Then it can be proven (21'22) that the limits 

# = lim ~I/N lim CN(X) 1IN (X fixed r 0) (2.1) ~ N  ~- 
N--+ oo N ~ o o  

N = x m o d 2  

exist and are equal. Here/~ is a positive constant called the connective con- 
stant (or effective coordination number) of the lattice. Some slightly stronger 
bounds on eu and CN(X) can also be proven. (23 25) It is believed, but not yet 
proven, that CN and CN(X) have the asymptotic behavior 

CN ~ ~NN~ - 1 (2.2) 

CN(X)~l.lUN~sing 2 (x fixed ~ 0) (2.3) 

as N--+ oo. Here 7 and 0~sing a r e  critical exponents, which are believed to be 
universal among lattices of a given dimension d. 

Consider now the mean-square end-to-end distance 

((J)2N~ ~ I  ~x IX[2 CN(X) (2.4) 

and the mean-square radius of gyration 

where 

CN ~o~SPN 
(2.5) 

$2(~~ N +  1 ~ N + I  coj (2.6a) 
i =  j = 0  

_ 1 U / 1 N \ 2  
2., 092 - 1 - -  ~', co,/ (2.6b) 

N +  1 i=o \ N +  1 i=0 } 

Very little has been proven rigorously about these quantities, but they are 
believed to have the asymptotic behavior 

((.0 2 )  ~ N 2v ( 2 . 7 )  

( S  2 ) ~ N  2~ ( 2 . 8 )  
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as N ~ 0% where v is another (universal) critical exponent. [Very recently, 
Slade (26) has proven that (2.7) holds with v = 1/2 for SAWs in sufficiently 
high dimension d.] 

Finally, let CNI, N 2 be the number of pairs (o  (1), co (2)) such that (o (1) is 
an Nl-step SAW starting at the origin, ~o (2) is an N2-step SAW starting 
anywhere, and co(~) and ~o (2) have at least one point in common (i.e., 
co(1)~co(2)r (This quantity is closely related to the osmotic second 
virial coefficient for polymer molecules.) Then it is believed that 

CNl, N2 ~ ] "lNl + N2N2A4 + ~ - 2  g ( N I / N 2 )  (2.9) 

as N1, N2 ~ 0% where A4 is yet another (universal) critical exponent and g 
is a (universal) scaling function. 

2.2. D y n a m i c  M o n t e  Car lo  M e t h o d s :  A R e v i e w  

In this section we review briefly the principles of dynamic Monte 
Carlo methods and define some quantities (autocorrelation times) which 
will play an important role in the remainder of the paper. 

Monte Carlo methods can be classified as static or dynamic. Static 
methods are those that generate a sequence of statistically independent 
samples from the desired probability distribution ~. Dynamic methods are 
those that generate a sequence of correlated samples from some stochastic 
process (usually a Markov process) having the desired probability dis- 
tribution g as its unique equilibrium distribution. 

For simplicity let us assume that the state space S is finite; this is the 
case in the applications studied in this paper. Consider a Markov chain 
with state space S and transition probability matrix P = {p(i ~ j)} = {p~} 
satisfying the following two conditions: 

(A) For each pair i, j e S ,  there exists an n~>0 for which pb')>0. 
Here o!') is the n-step transition probability from i to j. [This r l j  
condition is called irreducibility (or ergodicity); it asserts that 
each state can eventually be reached from each other state.] 

(B) For each j e S ,  

rciPij = rcj (2.10) 
i e S  

(This condition asserts that rc is a stationary distribution for the 
Markov chain P =  {p/j}.) 

In this case it can be shown (27-29) that zc is the unique stationary dis- 
tribution for the Markov chain P =  {p~}, and that the occupation-time 
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distribution over long time intervals converges (with probability 1) to 7c, 
irrespective of the initial state of the system. If, in addition, P is aperiodic 
(this means that for each pair i, j e  S, n!n)> 0 for all sufficiently large n), r l J  
then the probability distribution at any single time in the far future also 
converges to ~, irrespective of the initial state, that is, lim,_~ oo .-un!n) = rc~ for 
all i. 

Thus, simulation of the Markov chain P provides a legitimate Monte 
Carlo method for estimating averages with respect to re. However, since the 
successive states Xo, X~ .... of the Markov chain are in general highly 
correlated, the variance of estimates produced in this way may be much 
higher than in independent sampling. To make this precise, let 
A = { A ( i ) } ~ s  be a real-valued function defined on the state space S (i.e., 
a real-valued observable); and consider the stationary Markov chain 
(i.e., start the system in the stationary distribution 7z, or equivalently, 
"thermalize" it for a very long time prior to observing the system). 
Then {A,} - {A(X,)} is a stationary stochastic process with mean 

#A-- (At> = ~ ~iA(i) (2.11) 
i t S  

and unnormalized autocorrelation function 4 

CAA(t) ~ (AsA~+,> - #2 

= ~ A(i)[~zip~J'll--Trinj]A(j) (2.12) 
i, j c  S 

The normalized autocorrelation function is then 

Pax(t) - CAA(t)/CAA(O) (2.13) 

Typically pAA(t) decays exponentially ( ~ e  -Itl/T) for large t; we define the 
exponential autocorrelation time 

t 

~'exp, A ~-" lim sup - l o g  [PAA(t)[ (2.14) 

and 

~exp  ~ sup Texp, A 
A 

(2.15) 

Thus,  rex p is the relaxation time of the slowest mode in the system. (If the 
state space is infinite, Z~xp might be + 0o. However, for an irreducible, 
aperiodic Markov chain on a finite state space, Zexp is always finite.) 

4 I n  t h e  s t a t i s t i c s  l i t e r a t u r e ,  t h i s  is c a l l e d  t h e  a u t o c o v a r i a n c e  f u n c t i o n .  



Monte Carlo Algorithm for Self-Avoiding Walk 115 

An equivalent definition, which is useful for rigorous analysis, involves 
considering the eigenvalues of the transition probability matrix P. By the 
Perron-Frobenius theorem,/3~ P has a nondegenerate eigenvalue 1 with 
right eigenvector equal to the constant function and left eigenvector equal 
to ~; if P is aperiodic, then this is the only eigenvalue on the unit circle; 
and the remainder of the spectrum lies in the interior of the unit circle. 5 Let 
R be the spectral radius of the remainder of P, i.e., 

R =-inf{r: spec P c  {2:121 ~<r} w {1}} (2.16) 

Then, it is not difficult to show that R = exp(-1/'Cexp). In particular, the 
rate of convergence to equilibrium from an initial nonequilibrium dis- 
tribution is controlled by R, and hence by rexp- 

On the other hand, for a given observable A we define the in tegrated  

autocorrelat ion t ime 

"Cint'A =2t=Z--  pAA(t)=~+ t=, ~' PAA(t)  (2.17) 

(The factor of 1/2 is purely a matter of convention; it is inserted so that 
~int, A ~ ~'exp, A if PAA( t )~e  -Itl/r with r~> 1.) The integrated autocorrelation 
time controls the statistical error in Monte Carlo measurements of (A) .  
More precisely, the sample mean 

.~_1  ~ At (2.18) 
/71=  1 

has variance 

var(A)=~2 ~ C A A ( r - - s )  
r , s  = 1 

= -  1 - CAA(t)  
n t=  --(n-- 1) 

1 
~ - -  (2~int,  A) CAA(O ) for n ~> r 

n 

(2.19a) 

(2.19b) 

Thus, the variance of.d is a factor 2"~int, A larger than it would be if the {At} 
were statistically independent. Stated differently, the number of "effectively 
independent samples" in a run of length n is roughly n/2~int, A. 

5 In fact, P is a contraction with respect  to any  of the lP(7~) n o r m s  (1 ~< p ~< ~ ) .  These  n o r m s  
are defined by [[A lip =- (Y~i~ s ~i [A(i)[P)I~;~ for p < o% and  [IAI[ o~ -= sup iEs  ]A(i)[. The  12(~) 
n o r m  is par t icular ly useful, as it arises f rom an inner  p roduc t  (A, B)=-Y~i~s niA(i)* B(i). 
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In summary, the autocorrelation times "Cex p and 2Tint, A play different 
roles in Monte Carlo simulations. Z~xp determines the number of iterations 
ndi~c that should be discarded at the beginning of the run, before the system 
has attained equilibrium; for example, ndisc > 20Z~xp is usually more than 
adequate. On the other hand, "tint, A determines the statistical errors in 
Monte Carlo measurements of ( A ) ,  once equilibrium has been attained. 

Most commonly, Z~xp and r~,t,A are of the same order of magnitude, at 
least for "reasonable" observables A. In this case, the problem of 
initialization bias, i.e., the need to discard data at the beginning of a run, is 
not a serious one: perhaps 20Z~x p data points at the beginning of the run 
need to be discarded in order to avoid a severe systematic error, but the 
total run length will have be on the order of 1000Zint, A (or even longer) in 
order to obtain reasonably small statistical errors; so only a negligible frac- 
tion of the data is being discarded. However, some algorithms, such as the 
one studied in this paper, have the property that Zexp >> zi,t,A for the obser- 
vables A of interest. In such cases the problem of initialization bias is 
potentially a serious one: the need to discard data at the beginning of the 
run could seriously degrade the computational efficiency of the algorithm. 
We return to this question in Section 3.6. 

Finally, we note that one convenient way of satisfying condition (B) is 
to satisfy the following stronger condition: 

(B') For  each pair i, j e S ,  rcipg=Ttjpj~ (2.20) 

[Summing (B') over i, we recover (B).] (B') is called the detailed-balance 
condition; a Markov chain satisfying (B') is called reversible. 6 Condition 
(B') is equivalent to the self-adjointness of P as on operator on the space 
12(rc) (see footnote4,  above). In this case, it follows from the spectral 
theorem that the autocorrelation function CAA(t) has a spectral represen- 
tation 

ISI 

CAA(t) = ~, ~(k)AA 21ilk (2.21) 
k = 2  

where 1 = 21 > 22 ~> 23 ~> --- ~> 2ts I ~> - 1  are the eigenvalues of P, and the 
spectral weights e(~a ) are nonnegative. Moreover, we have 

and 

R = exp(--1/'Cexp) -= max(1221, 121sll) (2.22) 

1 1 +22.< 1 1 + exp(--1/~xp) ~ 
"~int, A ~ 1 -- 22 "~2  1 - e x p ( ~  ~ Texp (2.23) 

6 For the physical significance of this term, see Kemeny and Snell (Ref. 27, Section 5.3) or 
Iosifescu (Ref. 28, Section 4.5). 
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3. THE P IVOT A L G O R I T H M  

3.1. Def in i t ion of the A lgor i thm 

The pivot algorithm v is a dynamic Monte Carlo algorithm, which 
generates SAWs in a canonical ensemble (fixed number of steps N) with one 
endpoint fixed at the origin (COo = 0) and the other endpoint free. The state 
space is thus 5~u, and the invariant probability measure is the standard 
equal-weight SAW distribution (zo)= 1/CN for each co e YN). The elemen- 
tary move of the pivot algorithm is as follows: choose at random a pivot 
point k along the walk (0 ~< k ~< N -  1); choose at random an element of the 
symmetry group of the lattice (rotation or reflection or a combination 
thereof); then apply the symmetry-group element to co~+l ..... (o N using co~ 
as a pivot (i.e., as the temporary "origin"). The resulting walk is accepted if 
it is self-avoiding; otherwise it is rejected and the walk co is counted once 
more in the sample. 

Different variants of the pivot algorithm are obtained by specifying dif- 
ferent distributions when we "choose at random": 

1. The pivot point k can be chosen according to any preset family of 
strictly positive probabilities Po, Pl ..... PN-I" The strict positivity (Pk > 0  
for all k) is necessary to ensure the ergodicity of the algorithm. In this 
paper we consider primarily a uniform distribution (p~ = 1/N for all k); but 
see Section 5.2 for a discussion of situations in which other choices may 
possibly be advantageous. 

[In practice we need not use k = 0  as a pivot point, since global 
rotations or reflections of the walk can be incorporated implicitly in the 
data analysis rather than explicitly in the simulation. Thus, the Markov 
chain that we in fact simulate is not ergodic on the whole space YN, but 
only on a subset of 5~u consisting of walks whose first step is in a specified 
direction. However, each walk produced in the simulation is considered 
during the data analysis to be a "proxy" for itself and all walks equivalent to 
it by global symmetries. Actually, this latter step occurs automatically, since 
all the observables that we study (e.g., C02u) are invariant under the sym- 
metry group of the lattice. The simulations reported in this paper employ a 
uniform distribution: Pk = 1 / ( N -  1 ) for all 1 ~< k ~< N -  1. ] 

2. Let G be the group of orthogonal transformations (about the 
origin) that leave invariant the lattice 2U. Then the symmetry operation 
g EG can be chosen according to any preset probability distribution 

7 MacDonald et aL (I6A7) call this the "wiggle" algorithm. We feel, however, that the term 
"pivot" more accurately describes the elementary move of the algorithm, and in particular 
emphasizes its global (nonlocal) nature. 
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{ P g } g e a  that satisfies p g =  p g  I for all g, and has enough nonzero entries 
to ensure ergodicity (see below). The condition pg = pg-~  is easily seen to 
be both necessary and sufficient to ensure detailed balance with respect to 
the equal-weight distribution n. 

Consider, for example, the case d =  2. Then G is the dihedral group 
D4, which has eight elements: 

�9 identity (1) 

�9 +_90 ~ rotations (2) 

�9 180 ~ rotation (1) 

�9 axis reflections (2) 

�9 diagonal reflections (2) 

The condition pg = pg-~ reduces to P+9OOrot ~-p 90Orot . It will be proven in 
Section 3.5 that a sufficient condition for ergodicity is the nonvanishing of 
the probabilities pg for 

l either either 

+ 90 ~ rotations and 180 ~ rotation 

or or 

both diagonal reflections both axis reflections 

In our simulations we have used the choice p,d = 0, pg = 1/7 for g ~ id. 

For  d =  3, G is the octahedral group Oh, which has 48 elements. This 
group includes (among other things) rotations and reflections similar to 
those in d =  2, as well as 180 ~ rotations about the face diagonal of a unit 
cube and _+ 120 ~ rotations about  the body diagonal of a unit cube. {31~ In 
any case, a simple description of the symmetry group of 7/d, valid for all d, 
goes as follows: An element g e G is a d x d orthogonal matrix with integer 
entries; so it suffices to specify the columns of g, which are ge l ,  ge2,..., ged, 

where el,  e2,..., e d are the unit vectors in Z d. Hence, an element g e G  can 
be specified uniquely by giving a permutation ~ of { 1 ..... d} and numbers 
a ~ ,..., ~ d = _+1, and setting 

g e i =  6 ie=(i) (3.1) 

It follows that the cardinality of G is 2rid!. Using this description of G, the 
pivot algorithm can be programmed very easily in any dimension. 

Some variants on the pivot algorithm are worth mentioning. For 
example, the original algorithm of Lal (14) uses a step of the walk (rather 
than a site) as the pivot location, and reflects the part  of the walk sub- 
sequent to that step in a hyperplane containing the chosen step. For the 



Monte Carlo Algorithm for Self-Avoiding Walk 119 

two-dimensional hexagonal lattice (the case considered by Lal), we do not 
know whether this algorithm is ergodic. However, for the simple 
(hyper)cubic lattice (any d~> 2) or the triangular lattice, this algorithm is 
clearly not ergodic, since a straight rod is "frozen." 

Another variant of the pivot algorithm on the square lattice is the 
following: Pick a pivot point k at random. If the angle of the SAW at o~k is 
180 ~ then attempt a diagonal reflection (choose one of the two diagonal 
reflections at random, with equal probability). On the other hand, if the 
angle at ~o k is 90 ~ then attempt either the diagonal reflection that would 
straighten this angle or else the axis reflection through the line determined 
by ~o k and ~o~_ 1 (again with equal probability). It is easy to check that 
detailed balance holds. Ergodicity of this algorithm follows from the proof 
of Theorem 1 in Section 3.5. This method yields a higher acceptance 
fraction than the usual pivot algorithm, since it uses local information to 
choose its pivots. 

For simplicity we have described the pivot algorithm as acting always 
on the part of the walk subsequent to the pivot point. However, the com- 
putational work can be reduced (roughly by a factor of 2) by applying the 
symmetry operation always to the shorter of the two segments of the walk, 
whichever it may be. In this variant of the algorithm, the initial point of the 
walk is no longer maintained fixed at the origin, so the foregoing descrip- 
tion with state space 5~u is inappropriate. Rather, the state space of the 
algorithm should be considered to be the space of equivalence classes of N- 
step SAWs modulo translation; the algorithm is then easily proven to be 
equivalent to the standard pivot algorithm. In practice, it is necessary to 
translate the walk back to the origin every once in a while in order to 
avoid integer overflow in the walk coordinates. 

3.2. A c c e p t a n c e  Fract ion and A u t o c o r r e l a t i o n  T ime 

In this section we present a refined version of the heuristic argument 
sketched in the Introduction, which relates the autocorrelation time ~ of 
the pivot algorithm to the acceptance fraction f We then present a 
heuristic argument that attempts to predict the critical exponent p for the 
acceptance fraction ( f ~ N - P ) ;  and we compare this prediction to 
numerical estimates of p from exact enumeration (Appendix A) and Monte 
Carlo (Section 4.2). The predicted value of p turns out to be incorrect, but 
"in the right ballpark." 

Suppose we know that the acceptance fraction f in the pivot algorithm 
behaves as f ~ N  p as N-~  ~ .  How, then, should we expect the 
autocorrelation time to behave? Note first that if the acceptance fraction is 
f,  then, on the average, once every 1/f attempted moves we will obtain a 
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success. Note also that the pivot moves are very radical: after a few (say, 
five or ten) successful pivots, the global conformation of the walk should 
have reached an "essentially new" state. Thus, we expect that for obser- 
vables A that measure the global properties of the walk--such as the 
squared end-to-end distance co~v or the squared radius of gyration S~v--the 
autocorrelation time Zint, A should be a few (perhaps five) times 1If On the 
other hand, it is important to recognize that local observables--such as the 
angle between the 17th and 18th steps of the walk--may evolve a factor 
of N more slowly than global observables. For  example, the observable 
mentioned in the preceding sentence changes only when o)17 serves as a 
successful pivot point; and this happens, on average, only once every N/ f  
attempted moves. 8 Thus, for local observables A we expect zint.A to be of 
order N/ f  By (2.23), Zexp must be of at least this order; and if we have not 
overlooked any slow modes in the system, then Zexp should be of exactly 
this order. Finally, even the global observables are unlikely to be precisely 
orthogonal [in 12(7r)] to the slowest mode; so it is reasonable to expect 
that Texp, A be of order N/ f  for these observables, too. In other words, for 
global observables A we expect the autocorrelation function pAA(t) to have 
an extremely slowly decaying tail, which, however, contributes little to the 
area under the curve. This behavior is illustrated by the exact solution of 
the pivot dynamics for the case of ordinary random walk (Section 3.3). 

The foregoing heuristic argument is, of course, far from a rigorous 
proof. It is not in general possible to find upper bounds on the 
autocorrelation time in terms of the acceptance fraction; the problem is 
that the state space could contain "bottlenecks" through which passage is 
unusually difficult. We have no reason to believe that such bottlenecks 
occur in the pivot algorithm, but neither do we have any proof of their 
nonexistence. 

The heuristic argument is inaccurate in one additional respect. In Sec- 
tion 3.3 we will compute an exact solution for the pivot dynamics in the 
case of ordinary random walk (i.e., no self-avoidance constraint); the result 
is f = l ,  ~Cexp=Zexp, A"~N, but (for global observables A) Zint, A ~ l o g N .  
Thus, rint, A is greater by a factor of log N than our naive argument would 
indicate. A similar factor of log N could conceivably occur in the self- 
avoiding case as well, so that we would have f ~ N -p but 2Tint. A ~ N p log N. 
However, the numerical evidence presented in Sections 4.2 and 4.3 appears 
not to support this possibility. 

Next we attempt to estimate heuristically the acceptance fraction f, 
and in particular to predict (at least approximately) the critical exponent p 

8 This important fact about the pivot algorithm was noticed by Garcia de la Torre et al. 
(Ref. 32, p. 149, second column). 
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( f  ~ N e). Let 1 ~< k ~< N -  1 and let g e G. Then the acceptance fraction for 
applications of symmetry operation g at pivot point k is some number 
f (g ,  k, N): it is the fraction of walks co e SeN for which all the transformed 
points co~ = cok + g(coi- ok), k + 1 <<, i<~ N, are disjoint from the points 
COo,..., c%. The acceptance fraction f is then the average of f (g ,  k, N) with 
respect to the probabilities {Pg}geG and Po ..... PN-1. 

A crude heuristic argument for the acceptance fraction f (g ,  k, N) is 
the following: Suppose that the segments coo ..... cok and cok ..... (.o N of the 
walk co behave as if they were typical k-step and ( N - k ) - s t e p  SAWs, 
respectively, in random relative orientation. In that case, the acceptance 
fraction would be precisely 

f (g ,  k, N) = CN/CkCN__ k (3.2) 

since this is the probability that the joining of a random k-step SAW and a 
random ( N - k ) - s t e p  SAW results in an N-step SAW. Averaging over k 
(with respect to any reasonable distribution) and using the asymptotic 
behavior (2.2) of CN, we predict 

f ,.~N -(7-1~ (3.3) 

Hence, p =7  - 1. (Recall that ~,- 1 is believed to equal 11/32 = 0.34375 in 
d = 2 ,  (33~ ,.~0.162 in d = 3 ,  (34) and 0 in d > 4 . )  

Of course, the supposition on which this argument is based is wrong, 
for two reasons. First, the two segments of the walk co are not typical k-step 
and ( N - k ) - s t e p  SAWs: the fact that they are known to occur on an N- 
step SAW means that they are somewhat "longer and thinner" than typical 
k-step and ( N - k ) - s t e p  SAWs, hence harder to intersect with. This 
property is preserved by the symmetry operation g, so one might expect 
that the acceptance fraction f(g,  k, N) would be greater than the prediction 
(3.2). On the other hand, the two segments are not in a random relative 
orientation: the fact that they are the two segments of an N-step SAW 
means that they are more likely to point in opposite directions (looking 
outward from the pivot point k), since this helps them to avoid intersecting 
each other. This nonrandom relative orientation certainly affects the accep- 
tance fraction, since it is "remembered" by the transformed walk. Consider, 
for example, the trivial case in which the group element g is the identity 
element. Then the acceptance fraction is 1, much larger than predicted in 
(3.2), due to a combination of the "longer-and-thinner" effect and the 
"orientation" effect. (The acceptance fraction in this case is of course 
irrelevant for determining the autocorrelation time, since proposed 
"moves" with g = M have the same effect whether they are "accepted" or 
"rejected": the system does not move at all.) On the other hand, if the 
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group element g is a 180 ~ rotation or a reflection (with certain axes), then 
one might expect the "orientation" effect to reduce the acceptance fraction 
below that predicted in (3.2): if the original orientation of the two segments 
tends to be antiparallel (so as to avoid intersection), then the new (rotated 
or reflected) orientation of the two segments may tend to be parallel (and 
thus favor intersection). For  180 ~ rotations or reflections with other axes, 
or for 90 ~ rotations, the situation is less clear. 

In summary, the prediction (3.2) is a very crude estimate and is wrong 
for at least two reasons, leading to errors of possibly opposite signs. Hence, 
there is no reason whatsoever to believe that the critical exponent p is 
exactly equal to 7 -  1 (except perhaps in dimension d/> 4, where we expect 
P = 7 - 1  = 0). On the other hand, this heuristic argument probably does 
capture the main qualitative features of the problem, so it is reasonable to 
expect that f does behave as ~ N  -p with p equal to a small, positive 
number. 

We have tested this heuristic argument in two ways: 

1. We have performed an exact enumeration of SAWs in d =  2 up to 
N =  17, and computed exactly the acceptance fractions f ( g ,  k, N). These 
data are reported in AppendixA, where we also perform a 
"series-extrapolation" analysis. The results of this analysis are not 
overwhelmingly stable, but they yield the following rough estimates: 

90 ~ rotations: 

axis reflections: 

diagonal reflections: 

180 ~ rotations: 

group average: 

p = 0.145 _+ 0.04 

p = 0.175 _ 0.04 

p =- 0.165 -t- 0.04 

p ~ 0.41 (not well converged) 

p = 0.18 _+ 0.04 

(95 % subjective confidence limits). We find the radically different exponent 
for 180 ~ rotations extremely surprising: it is natural to expect the accep- 
tance fraction for 180 ~ rotations to be much lower than that for other 
group elements, due to the "orientation" effect noted above; but, by stan- 
dard ideas about universality, one would normally expect this to affect the 
amplitude and not the critical exponent. Initially we suspected, therefore, 
that the apparently larger exponent p for 180 ~ rotations was a numerical 
artifact, which would disappear at larger values of N. 

2. Our Monte Carlo runs yield extremely precise estimates of the 
acceptance fraction in d = 2 for a variety of values of N in the range 200 ~< 
N~< 10000. The peculiar results of the series analysis led us to reanalyze our 
Monte Carlo data so as to extract also (where possible) the acceptance 
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fractions broken down by symmetry-group elements. These data, reported 
in Section 4.2 (Tables II and II]), show that f ~  N -p with 

90 ~ rotations: 

axis reflections: 

diagonal reflections: 

180 ~ rotations: 

group average: 

p = 0.1637 4- 0.0020 

p = 0.1967 _+ 0.0021 

p = 0.1953 _+ 0.0021 

p = 0.505 _+ 0.03 (somewhat subjective) 

p = 0.1926 _+ 0.0008 

(95% confidence limits). These data make it clear that the much larger 
critical exponent for 180 ~ rotations is not a numerical artifact from small N, 
but is a real effect. It would thus be reasonable to expect that all four group 
elements (more precisely, conjugacy classes) might have distinct critical 
exponents p; and there is some support for this in the data for 90 ~ 
rotations. If this is the case, then the exponent for the group average would 
be the smallest of the four individual exponents; but it would be afflicted by 
an unbelievably small correction-to-scaling exponent A~ (~0.03 according 
to our estimates), which would make accurate estimation of the exponent 
almost impossible (as our somewhat contradictory estimates show). In any 
case, we still do not understand physically why the acceptance-fraction 
exponent should be different for the group elements. 

Our Monte Carlo data also provide somewhat less precise estimates 
for the autocorrelation times ~in,.A of various global observables A (see 
Table IV and Section 4.3). Straight power-law fits yield rint,A "~ Nq with q ,~ 
0.205 _+0.015. The data appear not to be consistent with the logarithmic 
behavior "l~int. A ~ N q log N if we insist that q/> p. Since the only theoretical 
reason for considering multiplicative logarithmic corrections was based on 
the idea that q = p, and since furthermore q < p is highly implausible, we 
conclude that such logarithmic corrections are probably not present in the 
pivot algorithm for the d =  2 self-avoiding walk. 

In summary, we find that in d = 2 ,  f ~ N  p with p~0 .19 .  Clearly, p is 
not equal to 7 - 1 = 0.34375, but is in fact somewhat smaller. However, we 
do confirm that tint. A,-,N q for global observables A, with q ~ p .  Our 
preliminary results for d =  3 show the same qualitative behavior: p ~ 0.107 
(for the group average) versus (34) 7 - 1 ~ 0 . 1 6 2 .  Michael Fisher (private 
communication) has posed the following very interesting problem: Express 
the critical exponent(s) p in terms of  other critical exponents for the S A W  
(many of which have recently been computed in d =  2(35'36)). This problem 
is completely open. 
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3.3. Exact Solut ion of  Pivot Dynamics for Ordinary Random 
Walk  

In this section we solve exactly for some of the dynamical properties of 
the pivot algorithm for the case of ordinary random walk (i.e., for walks 
without the self-avoidance constraint). First we compute the eigenvalues of 
the transition matrix P (and thus Texv); next we compute the 
autocorrelation functions PAA(t) (and thus Tint,A) for selected observables A. 

Consider, for starters, the case of ordinary random walk on a two- 
dimensional regular lattice, which we take to be either square (coordination 
number q=4) ,  triangular (q=6) ,  or hexagonal (q=3) .  Then we can 
represent an N-step walk ~o by a sequence of integers (ll ..... lu) with 1 <~ 
li <~ q: the integer I i codes the angle at ~o i_ 1, i.e., the signed angle between 
the ( i -  1)th and ith steps of the walk. (For i =  1, li codes the absolute 
orientation of the first step of the walk.) The configuration space of N-step 
walks is thus a product space S = { 1 ..... q } N. 

Let us consider, to begin with, pivot algorithms that use only 
rotations, not reflections. We also assume (for simplicity only) that the 
pivot point k is chosen from a uniform distribution over 0 ~< k ~< N - 1 .  
Then the transition matrix P is of the form 

l N 
P = ~  ~ I |  | 

i=1 
(3.4) 

where I is the q xq  identity matrix, and R is a fixed qx q symmetric 
stochastic matrix (the details of R depend on the choice of the probabilities 
{Pg}ge G; the symmetry is a consequence of detailed balanee)i The eigen- 
values of R are real; we denote them 1-#1~>#2>~ .-. >~/~q~>-1. The 
eigenvalues of P are thus all of the form 

2 =  1 
q 
L (35a) 

N0~=I  

where nl,... , nq are nonnegative integers satisfying Zq=l  n~= N (they are 
the "occupation numbers" of the various eigenstates); the multiplicity of 
this eigenvalue is 

N!/ ( I n~! (3.5b) 
/ ~ =  1 

So the eigenvalues of P are rather uniformly distributed (with, however, 
nonconstant multiplicity) between 21 =/~1 = 1 and 2qN=It q. In particular, 
the next-to-leading eigenvalue of P is 22 = 1 - (1 - #2)IN = 1 - O(N-I). 
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This means that the slowest mode in the system 9 has relaxation time rexp = 
- ( l o g  22) -1 ~ N .  

For  example, if the probabilities {pg} are chosen to be uniform over 
the rotation subgroup of G, then we have R = (1/q)E, where E is the q x q 
matrix with all entries equal to 1. The eigenvalues of R are /~1 = l, 
#2 . . . . .  #q = 0, and the next-to-leading eigenvalue of P is •2 = 1 - -  1IN. 
To take another example, suppose that the probabilities {pg} a r e  chosen to 
be uniform over the nonidentity elements of the rotation subgroup of G. 
Then we have 

1 1 
R =  E - -  I 

q - 1  q - 1  

The eigenvalues of R are #1 = 1, P2 . . . . .  i%= -1 / (q-1) ,  and the next- 
to-leading eigenvalue of P is 

N 

If reflections as well as rotations are allowed, then the transition 
matrix becomes more complicated. A reflection acting at the ith coordinate 
(i.e., at pivot point c0i 1) changes not only li, but also I~+1,..., lu, since 
these latter angles are reversed in sign (0 ~ -0). Call this sign-reversal 
operation J; note that J is a permutat ion matrix. Then the transition 
matrix for a reflection acting at the ith coordinate is of the form I |  5| 
R,|174 i, where R'  is a suitable qxq  matrix (which depends on the 
relative probabilities assigned to the different reflections). Hence the full 
transition matrix P is of the form 

N I-~ 
p = ~  ~ i| I@R@I| i+.___~ i| I @ R , @ j |  i (3.6) 

"=1 i = 1  

where e is a constant (0 ~< c~ ~ 1) which expresses the relative probability of 
rotations and reflections. We do not know how to diagonalize this P in the 
most general case. But if both R and R' are linear combinations of E and I 
(as in the two examples above), then all of the matrices involved here can 
be simultaneously diagonalized, since J commutes with E. In a suitable 
basis, we have E = d i a g ( q ,  0,..., 0) and J=diag(1, . . . ,  1 , - 1  ..... - 1 ) .  Then, 
for any given R and R', the eigenvalues of P can be computed as before. 
Clearly we will again have 22 = 1 - O(1/N). 

9 We assume here that the algorithm is aperiodic, i.e., that #q> -1. This ensures that, for 
large N, 22 > [2qN] = I/~ql. 
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We do not know how to extend the above exact analysis to dimen- 
sions d>~ 3. However, in Appendix B we prove upper and lower bounds 
showing that the result 2 2 = 1 - O(1/N) continues to hold. 

Now we turn to the calculation of the autocorrelation function PAA(t) 
for certain global observables A. We consider the pivot algorithm on g d for 
arbitrary dimension d. For  simplicity we consider only the case in which 
the probabilities {pg} are uniformly distributed over the group G (including 
the identity element), i.e., R =  R ' =  (1/q)E and ~ = 1/2 (but not all these 
conditions are really necessary for our analysis to hold). We define ai to be 
the vector corresponding to the ith step of the walk, i.e., a+= ~oi-cni_l .  
Then the cross-correlation function of a+ and a / i s  

(ai(0) �9 a/(t) } = 6 U • Prob(in t trials no pivot point < / i s  chosen) 

= 6,/• (1 - i/N) I'l (3.7) 

(Note that a I couples to the slowest mode 22 = 1 - 1/S.) It follows that the 
(unnormalized) autocorrelation function of ~o N = Zff_ 1 a~ is 

C+N,~N(t)- (~0N(0)" ~0N(t) ) = 1 -- (3.8) 
i = 1  

This is the spectral representation, guaranteed on general grounds by 
(2.21); note that it has a uniform spectrum of contributions, ranging from 
the slowest exponential (i = 1) to the fastest (i = N). Thus, 

"Cexp.~N= - - I / l o g ( I - -  1 / N ) ~ N  as N-~  

On the other hand, the integrated autocorrelation time for (D N is 

l) 
1 - 2 - N  ~'int 'c~ ~ -  2 PO~N'WN(t) = 

t =  --oo i = 1  

( ' )  = l o g N +  C - - ~  + O ( N  -1) (3.9) 

where C is Euler's constant. Thus, "Cint,fo u ~ log N as N--* ~ .  Finally, we 
note that the autocorrelation function p~ou,O~N(t) has two distinct scaling 
behaviors as N ~ ~ ,  depending on the regime of t: 

1 
if It[ ,~N 

It] + 1  
1 e Itl/N (3.10) 

if [ t ] ~ N  N 1 - e-Itt/g 
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(More precisely, the first expression is valid for N--, ov with t/N--. 0; the 
second expression is valid for N--* oe with Itl/N>~ >0.)  

Next we look at the observable a~.aj ( i<  j), which is the cosine of the 
angle between the ith a n d j t h  steps of the walk. The mean value (a~. a j )  is 
zero (by symmetry). The cross-correlation function of ai" aj with ak" az is 

(a~. aj(0) a~. a,(t)) 

1 
=-~ 6ik6jt x Prob(in t trials no pivot point in the interval [i, j )  is chosen) 

, ( =-~t6iJ)jtx 1 -  (3.11) 

[Reason: Note first that the {ai(0)}1~<i~< N are independent random vectors 
taking the values + e l ,  +_e2 ..... _+ed with probability 1/2d; it easily follows 
that 

(a i"  a j(0) ak" at(0) ) = 1 Oik 3jr 

for i < j, k < L Now consider the expectation of ak" at(t) conditioned on the 
configuration at time 0 and also conditioned on the occurrence or not of a 
pivot site in the interval l-k, l) sometime during the time interval (0, t]. If 
no such pivot occurred, then ak" at(t) = ak" al(0). If such a pivot occurred, 
then a~(t) and a~(t) have random relative orientations, so the conditional 
mean of ak 'a t ( t )  is zero.] It follows that the (unnormalized) 
autocorrelation function of 

is 

N 

e)~v = ~ a i ' a j = N + 2  
i , j = l  l<~ i<j< .N  

a i" a j  

Co)2~o2( t  ) ~ ((.02N(O). (j)2N(t) ) - -  (( .02N)2 = d l ~ i< j ~  N 

= - -  1 - (3.12) 
d m=l 

The slowest decaying contribution comes from m--  1; hence 

z 2 = - ' "  "~/,ogt 1 -- 1/N) ..~ N exp,o)  N 

822/50/1-2-9 
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as N ~ ~ .  Moreover, 

CO~2N,O,~N(O) = 2N(N--  1 )/d 

so the normalized autocorrelation function is 

2 2 t - t -  (3.13) 
P~176 ) N _ I  m=i 

Hence, the integrated autocorrelation time for C02N is 

1 
~, 2 2 t  "L'int'c~ "2t= --oo PEON' CON( ) 

1 N ~ I (  _ m ~ ( 2 N _  ) 
- 1 1 

N -  1 m=l N / \  m 

_ I N _ A [ 2 N I o g N + ( 2 C _ ~ ) N + O ( I ) ]  

= 2 1 o g N + ( 2 C - ~ ) + O ( ~ - - ~  (3.14) 

Thus, 

Tint,a~ 2 ~ l o g  N as N ~  

2 2 t distinct Finally, we note that the autocorrelation function Po, u.o~N( ) has two 
scaling behaviors as N ~ ~ ,  depending on the regime of t: 

2 
if It[ ~ N  

Itl + 2  
2 2 t (3.15) 

P~N.,o~( ) ~  2 e -Itl/u 
if Itl ~ N N 1 - - e  - I t l / u  

We can also use (3.11) to compute the autocorrelation function of S~, 
the squared radius of gyration. From (2.6) we find 

$2 N N ( N +  2) 2 
6(N+ 1) q ( N +  1)2 ~ i ( N + l - j )  ai 'aj  (3.16) 

l<~i<j<.N 

Inserting this into (3.11), we ob ta in  

4 ~ i2(N + l _ j ) 2 ( l J N i ) l t '  
CS2N'S2(t) = d(N-~- 1)41 <~i<j<~N 

2 N 1  I / 1 \l,I 
- lSd(U+ 1) t(t+ (3.17) l=1 
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A tedious calculation yields 

4 (N-1)N(N+I)(N+2)(2Ni+2N+3)  
Cs~'S2u(O) = d(N + t )4 360 (3.18) 

and an even more tedious calculation yields 

" t i n t ' S 2  ~-- "2t PS~N'S2N(t) 
= - -oo  

6 

(N-- 1 ) N(N + 1 )(N + 2)(2N 2 + 2N + 3) 

N 1  

l(1+1)(l+2)(12+2l+2) -~--S--_ i - 1  
/ = 1  

=61og N + (6C-7---~ ) + 0 ( 1 ~ )  (3.19) 

Thus, 

"fint,S 2 ~ log N as N ~ oo 

Finally, we note that the autocorrelation function ps],s~(t) has two distinct 
scaling behaviors as N--* oe, depending on the regime of t: 

P4,4(0~ 

6 
Itl + 6  
6 e tt[/N 
N 1 - e Itl/N 

if ltl @N 

if Itl ~ N 
(3.20) 

In summary, all three of the global observables A = ~oN, a)2u, S~v have 
%xp,A "~ N, but rint, A ~ l o g  N. On the other hand, local observables like 
A = ai or ai" aj (i, j fixed) have rexp. A ~ "(int,A ~ N. 

Finally, the foregoing formulas also shed some light on the relative 
efficiency of (coL) and ( S  2 )  in making Monte Carlo estimates of v. On 
the one hand, the relative variance of S2N is (for large N) only 2/5 that of 
a)2: 

var(S 2) N2/45d+O(N) 4 ( 1 )  
(S2N) 2 -- N2/36 + O(U) =5-d+ O (3.21) 

var(cO2u) 2N(N-1)/d 2 (N)  
(C02N) 2 N2 = ~ +  0 (3.22) 
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This is because the radius of gyration is a somewhat more "global" 
measure of the size of the walk than is the end-to-end distance. On the 
other hand, Zint,s~, for the pivot algorithm is asymptotically three times as 
large a s  Tint.co~: 

"fint,S 2 6 log N +  ( 6 C -  71/5) + O((log N)/N) 

Zint,co ~ 2 log N +  ( 2 C -  5/2) + O((log N)/N) 

67 ( 1 )  
=3  20(log N +  C -  5/4) t- O 

(Note, however, that even for N =  10,000 this ratio is only ~2.61.) It 
follows from (2.19b) that the relative variance in estimates of (S~v) by the 
pivot algorithm will be asymptotically 6/5 as large as the relative variance 
in estimates of (CO~v). For the self-avoiding walk, these constants will of 
course be changed, but we expect them to be "in the same ballpark"; and 
this is indeed the case (see Tables II and IV in Section 4.2). 

3.4. Data Structures and Computa t iona l  Complex i ty  

In this section we discuss the data structures needed in implementing 
the pivot algorithm, and analyze the algorithm's computational complexity. 
We also make some practical remarks regarding implementation of the 
computer program. 

We store the coordinates of the current walk co = (coo,..., CON) using 
two (redundant) data structures: a sequentially allocated linear list and a 
hash table. The former is self-explanatory. A hash table can be defined 
abstractly as a data structure with the following properties: Given a finite 
(but typically enormous) set K of "possible keywords," we wish to store a 
subset H c K (of cardinality ~< some maximum M) in such a way that, for 
any x e K, the following operations can be carried out rapidly: 

1. Query. Is x ~ H ?  

2. Insertion. Insert x into H (if it is not in H already). 

3. Deletion. Delete x from H (if it is in H currently). 

Specific implementations of the hash table will be discussed below, along 
with the precise meaning of the word "rapidly." Roughly speaking, 
"rapidly" means "in a time of order 1, on the average." In our application, 
the set K of possible keywords will be the set of all points in some box 
B c 7/d that is large enough to contain all possible points in the walk CO 
(e.g., a cube of side >~2N centered at the origin). 

Our sequentially allocated linear list is a permanent data structure, 
which contains at all times the current configuration of the walk ~o. Our 
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hash table is, on the other hand, a scratch data structure, which is used 
solely for self-avoidance checking; it is initialized to empty (H = ~ )  and is 
reset to this condition after each use. We now describe in more detail how 
the self-avoidance checking is performed. 

Suppose that a pivot site ~o k (1 ~< k ~< N -  1) and a symmetry transfor- 
mation g have been (randomly) chosen. We then have to compute the 
proposed new walk e)', defined by 

, {~o; for 0~<i~<k (3.24) 
co,= co~+g(e)i-cok) for k+l<<.i<~N 

and test whether co; r coj for all 0 ~< i < k < j ~< N. (If i, j are both ~< k or 
both ~>k, then co;r is guaranteed, since the original walk co was self- 
avoiding.) Note now t h a t / f  there is an intersection, it is most likely to occur 
for i and j both close to k (see below for details). So we check those 
positions first. That is, we enter the points (J)~+l, COl 1, COl+2, (D~--2 ..... in 
that order, into the scratch hash table, checking for repetitions. If a self- 
intersection is encountered, then the procedure is immediately terminated 
and the proposed pivot move is unsuccessful. If, on the other hand, the 
entire walk co' is entered into the hash table without encountering an inter- 
section, then the proposed pivot move is successful. In either case, the hash 
table is cleaned up before exit. 

The computational complexity of this self-avoidance-checking 
algorithm can be analyzed as follows: Define ~ ' [ i , j ]  to be the set 
{comax(i,0),(J)max(i,0)+l ..... cotin(j ,N)}.  Then one application of the self- 
avoidance-checking algorithm (including reinitialization) requires a time of 
order I(co'), where 

min{i: c o ' [ k -  i, k + i] is not a SAW } 

I(co ' ) -  if co' is not a SAW (3.25) 

N if co' is a SAW 

In particular, the amount of time required is at most O(N). Now, if the 
acceptance fraction is ~ N  -p, then we can expect a successful pivot once 
every ,-~N p attempts; so the amount of work required per successful pivot 
is certainly at most O(NI+P). But in fact we can improve this bound to 
O(N), by the following heuristic argument: 

As remarked above, the amount of work per attempt is of order I(~o'). 
Let us estimate crudely the expected value E[-I(co')]: 

Prob{I(co') > i} = Prob{co'[k - i, k + i] is a SAW} 

Prob{a 2i-step SAW pivoted at i is again a SAW} 

~ i  - p  (3.26) 
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Therefore, 

N 

E[l(~o')] = ~, j P r o b { I = j }  
j = o  

N 

= 2 P r o b { l > i }  
i=o  

N 1 - P (3 .27)  

since p < 1 (this is crucial). In particular, the conditional expected values 
given that the attempt succeeds or fails are 

EEl[ success] = N (3.28) 

E[II failure ] ,-~ N 1 - p (3.29) 

Thus, the expected amount of work required per successful pivot is of order 

E[II failure ] -E[number of failures until a success occurs ] 

+ E[II success] 

1 =O(NI-p)-~-~+ N 

= O(N) (3.30) 

Strong numerical evidence confirming this prediction will be presented in 
Section 4.4 (see Table V). 

Combining the above with the conjecture Zint ~ N p from Section 3.2 
(omitting possible logarithms), it follows that the pivot algorithm requires 
O(N) work per "effectively independent" observation of a global obser- 
vable. To see how good this is, consider any other Monte Carlo algorithm 
(dynamic or static) for generating SAWs. To get an "effectively indepen- 
dent" data point for a global observable, it is necessary to change at least 
eN sites of the walk, for some fixed e > 0. If each of these new sites is com- 
puted separately, then this algorithm would require at least order N work 
per "effectively independent" observation. Therefore, any algorithm that 
would surpass the order-N bound cannot afford to compute (or even store) 
most of the new sites on successive walks. 1~ 

The easiest way to implement the "abstract hash table" is as a "bit 

10 One might imagine storing a walk as a sequence of bond rotations rather than as a 
sequence of points (see Section 3.3 and Appendix B). In this formulation, a pivot move 
changes only one element. But it is hard to see how to check self-avoidance after a proposed 
pivot move without computing explicitly the walk coordinates. 
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map," i.e., a large array in which each keyword x e K (i.e., each point in the 
box B) is assigned one bit: this bit is set to 1 if x e H, and 0 otherwise. Then 
the operations of query, insertion, and deletion can obviously be performed 
in a time of order 1. The chief drawback of this method is its extravagant 
space requirements: the array requires at least ( 2 N +  1) e bits. On most 
machines this is unfeasible even in d = 2 if N exceeds a few thousand, or in 
d/> 3 if N exceeds a few hundred. 

An alternate implementation uses the method of hash-coding~37'38): An 
array of M words is assigned, and each keyword x E K  is assigned a 
primary address h(x)  in this array. Since in general M ~  IKI, the "hash 
function" h is necessarily many-to-one, i.e., many distinct keywords may 
share the same primary address, leading to the possibility of collisions. The 
various hash-coding algorithms are distinguished by the method they use 
to resolve collisions, i.e., to decide where to store a keyword if its primary 
address happens to be occupied by some other keyword. One of the 
simplest collision-resolution schemes, and the one we use, is linear 
probing(37'38): if the primary address h(x)  is occupied, the algorithm 
searches successively in addresses h(x)  + 1, h(x)  + 2 .... (modulo M) until it 
finds either the keyword x or an empty slot. 

In the worst possible case, a single query or insertion into a hash table 
containing N entries could take a time of order N. However, it can be 
shown ~37) that as long as the hash table does not get close to full (i.e., N 
does not get near M), then the average time (i.e., if the points are randomly 
distributed) for a single query or insertion is of order 1. So the hash-coding 
method is nearly as fast as the bit-map method, and far more space- 
effective. 

We remark that deletion from a linear-probing hash table is a delicate 
affair: if done naively, entries can get "lost. ''(37) Fortunately, in our 
application deletions occur only when cleaning up the table at the end; 
therefore, all difficulties can be avoided either by performing these deletions 
in a last-in-first-out manner, or by keeping a list of the locations in which 
elements have been inserted and then deleting precisely these entries. (We 
did the latter.) 

In choosing the hash function h, we want the image set h[co'] to be 
"sparse": that is, if co~ happens to be close to co~, then we want h(oJ~) to be 
far from h(coj). This is particularly important, since the occupied lattice 
sites in a self-avoiding walk are close together. We used hash functions of 
the form 

h(Xl ..... Xd) = (al x l  + ""  + adxu) m o d  M (3.31) 

where al,..., ad, M are chosen to be relatively prime and satisfy 
ak ~ M kind+ 1) (3.32) 
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Thus, the ak are all of different magnitude, which helps ensure the desired 
behavior of h. [To  understand this, think about why h(xt, . . . ,  x a )=  
(Xl + .. .  + xa) mad M is a bad hash function.] In particular, because we 
are using linear probing, we want to avoid near-collisions as well as 
collisions; this is why we insist on ak > 1 for all k. 

To test how well h "hashed" its input, we repeated some runs with 
different values of M between 2N and 10N, each time choosing at ..... aa as 
specified above. The difference in overall running time was negligible--less 
than 3 %. We concluded that relatively little time was being wasted due to 
h(co~) coinciding with h(o~)) for co~ r c@. 

3.5. Proof  of  Ergodic i ty  

In this section we prove the ergodicity of various versions of the pivot 
algorithm. We have tried hard to convey the main ideas of the proofs 
through pictures and informal descriptions preceding the formal arguments. 

T h e o r e m  1. The pivot algorithm is ergodic for self-avoiding walks 
on Z d provided that all axis reflections, and either all 90 ~ rotations or all 
diagonal reflections, are given nonzero probability. In fact, any N-step 
SAW can be transformed into a straight rod by some sequence of 2 N -  1 or 
fewer such pivots. 

Nota t ion .  Before we explain the ideas behind the proof, we need to 
establish some notation. We consider SAWs co= (coo, cot ..... coN) in Z d, 
where coo is not necessarily 0. Let J(j(co~) denote the j t h  coordinate of ink, 
so that cok = (Xt(cok), X2(cok),..., Xa(cok)). We define B(co) to be the smallest 
rectangular box containing co, that is, 

B(co)= {(xt,..., xa): m)(co)<~xj<~m~(~o) for all j =  1 ..... d} (3.33) 

where 

and 

m)(o3) = min{Xj(cok): k = 0 ,  1 ..... N} (3.34) 

m2(co) = max{Xj(co~): k = 0, 1,..., N} (3.35) 

are the minimum and maximum values, respectively, of the j t h  coordinate. 
A "face" of B(co) is any set of the form {xeB(co): xj=mj(co)} for some 
i = 1, 2 and some j = 1 ... . .  d. Let 

Mj(co ) = m}(co) -- m)(co ) (3.36) 

and let 
D(cn) = M,(co)  + . . .  + Md(co) (3.37) 
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Thus, Mj(CO) is the extension of the walk ~o in the j t h  coordinate direction, 
and D(CO) is the l ~ diameter of B(CO). Finally, let A(co) be the number of 
straight internal angles of co: 

A(CO)= # { k : O < k < N a n d  CO~ = �89 + cok+l)} (3.38) 

Proof of  Theorem 1. 
the set of all N-step SAWs 

(a) 

Here is the plan of the proof: We will partition 
into two subsets: 

The set of those co for which some face of B(co) contains neither 
of the endpoints COo, CON. 

(b) The set of those co for which the endpoints co o and con are in 
opposite corners of B(co). 

(Every N-step SAW lies in exactly one of these two subsets.) If CO is in sub- 
set (a), we will show that there exists a pivot point CO, and an axis reflection 
whose result is a SAW CO' with D(CO') > D(CO) and A(CO') = A(CO). If CO is in 
subset (b) and is not a straight rod, we will show that there exists a pivot 
point COs and a 90 ~ rotation (or a diagonal reflection) whose result is a 
SAW CO' with A(CO') = A(CO) + 1 and D(CO') ~> D(CO). From this, we conclude 
that for every N-step SAW CO that is not a rod, there exists a SAW CO' that 
may be obtained from CO by a single pivot, and satisfies A(CO')+D(co')> 
A(CO)+D(CO). Since O<~A<<.N-1 and O<<.D<~N for every N-step SAW, 
and A + D = 2 N -  l if and only if the walk is a rod, it follows that any 
N-step SAW can be transformed into a rod by a sequence of at most 
2 N -  1 pivots. 

Now for the proof. First suppose that CO is a SAW in subset (a), i.e., 
suppose that there exists a coordinate hyperplane xj = c which determines a 
face of B(CO), such that neither COo nor CON lies in this hyperplane. Then we 
will show that we can perform a successful pivot that is a reflection through 
this hyperplane; the pivot point co, is chosen to be the first point of CO that 
lies in this hyperplane. (See Fig. 1.) The resulting SAW, co', will be seen to 
satisfy A(CO') = A(CO), Mj(CO') > Mj(CO), and Mr(CO') = Mr(CO) for l ~ j, hence 
D(CO') > D(CO). 

In detail: Suppose that there exist i e {1, 2} and j e {1,...,d} such 
that neither COo nor CON lies in the face {xeB:x j=m~.} .  Let t =  
min{k: Xj(COk)=mj}. Now reflect COt+~ ..... CON through the hyperplane 
xj = mj, yielding the walk co' = (co; ..... CON) defined by 

for k <~ t, CO'k = ~  k 

for k > t, Xt(co~,) = Xl(cok) for l ~ j 

Xj(co'~) = 2m~ - Xj(co~) 

(3.39a) 

(3.39b) 

(3.39c) 
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Fig. 1. 
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(b) 

(a) Pivot at o9, by reflecting through the dashed line. (b) The result. (We can now 
reflect through the dashed-and-dotted line.) 

It is not hard to see that co' is indeed a SAW. We have to check that for all 
k > t, cok is not in the set (~o0,..., cot}. This is clear if Xj(cok) ~ m~, since then 
co~ r B(co); and if Xj(cok) = mj, then co~, = cok, so the result follows because 
co was a SAW. 

Also, A(co')= A(co), because right angles are preserved by axis reflec- 
tions. [Note that Xj(cot_ 1)# m~, but Xj(cot+ 1)= mj, so both co and co' have 
right angles at cot.] 

Next, we show that D(co')>D(co). First, it is clear that 
Ml(co') = Mr(co) for l #  j. Now, let Qr:s(co) be the extension in the j t h  coor- 
dinate direction of the subwalk (mr, cor+~ ..... cos), i.e., 

Q~,s(co)=max{Xj(cok):r~k<..s}-min{Xj(co~):r<<.k<...s} (3.40) 

Then 

while 

Mj(CO) = max(Qo,,(co), Q,,u(o3)) (3.41) 

Mj(co ' )  -~ Qo,t( co ) -t- Qt,N(co ) (3.42) 
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Both Qo,,(09) and Qt,N(09) a r e  strictly positive [-since Xj(09o)Cmj and 
Xj(09N) :~ m~], so Ms(~o' ) > Ms(09 ). This completes the proof in case (a). 

Next, suppose that 09 is a SAW that is in subset (b) and is not a rod. 
Then A(09) < N -  1 (i.e., 09 contains at least one right angle), so we choose 
our pivot point 09s to be the last right angle of 09. Since 09N lies in a corner 
of B(09), there must be a face of co that contains 09s, 09s+1 ..... 09N but does 
not contain cos_l. (See Fig. 2a.) We now perform a 90 ~ rotation (or 
diagonal reflection) with pivot point 09~ so as to straighten out the angle 
at 09s. In the resulting walk co', points 09s+1, 09s+2 ..... (-ON will lie outside 
B(09). The result will be an increase by 1 of A(09); D cannot decrease, since 
one Mj will increase by N - s ,  another will decrease by at most N - s ,  and 
the rest will not change at all. 

Formally, 09 is in subset (b) if for each j ~  {1,..., d), either Xj(09o)= 
m)(09) and Xj(09N) = rn~(09), or else Xj(09o) = m~(09) and Xj(09N) = m)(09). Let 

s = m a x { k : O < k < N a n d  co~ ~1(09k_ t + 09k+ 1)} (3.43) 

~ o  

F 

S (a) 

i 

/ 

(-d o 

(-JR 

Fig .  2. ( a )  R o t a t e  90  ~ a t  o9 s. (b )  T h e  resul t .  

(b) 
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Thus, (~o s, ~os+ 1 . . . . .  ( .ON) lie on a straight line perpendicular to the line 
segment joining ~os_ 1 with ~os. Let j '  and j" be the (unique). coordinates 
satisfying Xj,(co~)CXj,(OJN) and Xj,,(~o~_l)va X;,(~%); note that j '  vaj ". Now 
perform a 90 ~ rotation (or diagonal reflection) at ~ to get a new SAW co' 

t (/)t  with ~ok = ~k for k ~< s, and ( s_ 1, ~'~ ..... o~v) all on one straight line. 

It is clear that c~' is a SAW, since ~o'~+ 1, ~o's+2,..., ~ v  r B(~o). [In detail: 
let i "=  1 or 2 be such that 

Then 

xs,(~s)  = m;:(~)  

Xy,,(~o'~+ l) = mr(co) + ( -  1) c' 

i.e., ~'s-1 and ~o's+l lie on opposite sides of the hyperplane 

xy, = mJ',(co) 

Since (~'~ ..... ~o~v) lie on a straight line, the claim follows.] It also follows 
from the above that 

Mj,,(~o') = Mjo(a~)+ ( N - s )  

Also, it is easy to see that Mj,(co')>~Mj,(c~)-(N-s), and that 
Mj(~o') = Mj(~o) for all other j ~  { 1,..., d}. Therefore, D(~o')~> D(~o). Finally, 
the choice of pivot guarantees that A(~ ' )  = A(~o) + 1. 

This completes the proof of Theorem 1. | 

We now consider other variants of the pivot algorithm, using different 
subsets of the lattice symmetry group for the allowed pivots. First, it is 
clear that either 90 ~ rotations or diagonal reflections must be included for 
the algorithm to be ergodic, for otherwise A(~o) would never change; in 
particular, straight rods could not be transformed into anything else. 
However, 90 ~ rotations alone are not enough (at least in Z2); in fact, there 
exists a 223-step SAW in 7/2 that is not connected to any other SAW by 
90 ~ rotations; see Fig. 3. (We conjecture that diagonal reflections alone do 
suffice for ergodicity.) Theorem 1 shows that we do not need 180 ~ rotations 
if we have axis reflections. The reverse case is the following theorem; for 
simplicity, we consider only d = 2. 

T h e o r e m  2 (d=2) .  The pivot algorithm is ergodic for self- 
avoiding walks on 7/2 provided that the 180 ~ rotation, and either both 90 ~ 
rotations or both diagonal reflections, are given nonzero probability. 

Proof. We use the notation and ideas of the previous theorem. It suf- 
fices to show that any SAW ~o with A(~o) < N -  1 can be transformed into 
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Fig. 3. A 223-step SAW in 7/2 that is not connected to any other SAW by 90 ~ rotations. 
(This SAW is not minimal.) 

a SAW co" with A ( c o " ) = A ( c o ) +  1 by some finite sequence of allowed 
pivots. Let co be an N-step SAW. Wi thou t  loss of  generality, assume that  
XI((.ON_I)=XI((DN), SO that  (DN=O.)N_ 1 "~-(0, 1). Ifml(co)=m~(co), then co 
is a rod  (point ing in the 2-direction); so assume that  m~ < m ~ .  Choose  
i~ {1, 2} so that  Xl(coo)r 

Case I. If Xl(coN) = m] ,  then let cos be the last right angle in co, i.e., 

1co 1)} (3.44) s = m a x { k : 0 < k < N a n d c o k r  ~ - l + c o k +  

Then a 90 ~ ro ta t ion  (or a diagonal  reflection) at co s gives a new walk co" in 
which (co;',..., CON) lie on a straight  line x2 = const,  and A(CO")= A(CO)+ 1. 
(The si tuat ion is the same as tha t  depicted in Fig. 2.) 

Case 2. If  J(-I(coN) :~m~, let 

z = min{x2: (m~, x2) e {COo, coa ..... cos-} } (3.45) 

and let t be the unique index such that  cot = (rn~, z). It is not  hard  to see 
that  we can rota te  180 ~ at co, to get a new SAW c5 with XI(CbN_~)= 
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X'I(O)N) , A((h)=A(co), and MI(eS)>M~(m). [-The inequality on M1 is 
proven exactly as (3.41)-(3.42) in case (a) of Theorem 1.] We now repeat 
this procedure; after at most N 180 ~ rotations we will be in case 1, and 
hence able to increase A by 1. | 

Remark. This proof, unlike that of Theorem 1, shows only that the 
required number of pivots is at most of order N 2. We do not know if this 
can be improved to be of order N. 

3.6.  I n i t i a l i z a t i o n  

In this section we discuss questions related to the initialization of the 
pivot algorithm. 

When analyzing the data produced by a dynamic Monte Carlo 
method, one assumes that the observations come from an (approximately) 
stationary stochastic process whose single-time probability distribution is 
the desired equilibrium distribution re. This can be accomplished in either 
of two ways: 

1. Equilibrium start. Choose the initial configuration Xo from the 
equilibrium distribution ~t. Then the Markov chain Xo, X1, )tr2,... is 
obviously a stationary stochastic process. 

2. "Thermalization." Start in an arbitrary initial configuration .go 
and discard the first T observations, where T is large enough so that the 
distribution of XT is very close to the stationary distribution re. Here T may 
be either (a) a fixed time, or (b) a stopping time. 

We discuss each of these approaches in turn. 

Equilibrium Start. In most applications in statistical mechanics and 
quantum field theory, an equilibrium start is simply unfeasible: no efficient 
algorithm for generating random samples from the equilibrium distribution 
it exists. However, the case of self-avoiding walks in the canonical (fixed-N) 
ensemble is an exceptionally favorable one, because there do exist feasible 
"static" Monte Carlo methods that choose an N-step SAW at random from 
the uniform distribution ~. These methods are, to be sure, very time- 
consuming--in fact, it is an open question whether there exists such an 
algorithm whose expected running time is bounded by a polynomial in N. 
However, this is not necessarily a severe drawback to using the algorithm 
for the purpose of initialization, since the algorithm need only be called 
once. 

The most obvious static methods are simple sampl&g and its variants: 
generate an ordinary random walk (or nonreversal random walk, etc.); if it 
intersects itself, start over; continue until you have an N-step SAW. 
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However, the expected running time of these methods is exponential in N, 
of order (q/l~) N or [ ( q -  l)/,tt'] N, respectively, where q is the coordination 
number of the lattice and g < q - 1  is the connective constant defined in 
(2.1). 

A much better static method is dimerization,  ~39 42) which we now 
explain briefly. We will then outline a heuristic argument which shows that 
the expected CPU time for generating an N-step SAW is 

~ N  cll~ with C 1 = ( y -  1)/2 

To generate an N-step SAW by the dimerization method, we generate 
two (N/2)-step SAWs ("dimers") and attempt to concatenate them. If the 
result is self-avoiding, we keep it; otherwise, we discard both dimers and 
try again. This algorithm is applied recursively: to generate one (N/2)-step 
SAW, we generate two (N/4)-step SAWs and attempt to join them 
(discarding both pieces if the result is not self-avoiding), etc. The recursion 
can stop at level k if there is a quick way to generate random SAWs of 
length No = 2-kN (e.g., generating ten-step SAWs by simple sampling is 
quite efficient, so we can generate an 80-step SAW using three levels of 
recursion). It is easily proven that this algorithm generates SAWs from the 
uniform distribution. 

Let TN be the average amount of CPU time needed to generate 
an N-step SAW by dimerization. Let PN be the probability that the 
concatenation of two random (N/2)-step SAWs yields an N-step SAW; 
assuming that 

CN ,~ AIzNN~ - 1 (3.46) 

[cf. (2.2)], we have 

P N  = CN/(CN/2) 2 ~ B -  IN  ~ -  I) (3.47) 

where B = A / 4  ~ 1. We will need to generate, on the average, 1/pN pairs of 
(N/2)-step SAWs in order to get a single N-step SAW: 

TN ~ B N  ~ - 12TN/2 (3.48) 

(We have neglected here the time needed for checking the intersections of 
the two dimers; this time is linear in N, which, as will be seen shortly, is 
negligible compared to the time 2TN/2 for generating the two dimers.) 
Iterating this k times, where k = l o g z ( N / N o )  is the number of levels, we 
obtain 

(2BN r -  1)~ 
T u  ~ 2~ ~_ 1)k~k- 1)/2 Tuo 

,,~ NCl log~ N+ c2 (3.49) 
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where 

7 - 1  7+1  5 - 3 7  
c ~ -  2 ' c 2 = - - ~  + l ~  2 +log2A 

N o w ,  T N grows faster than any polynomial in N, so the dimerization 
method will be unfeasible when N is very large. Fortunately, the constants 
Cl and c2 are very small (in d = 2  we have numerically c1~0.17 and t~ 
c2~0.72), so that even for N up to several hundred (resp. more than 
10,000) ,  N clt~ is less than about N 2 (resp. N3). Thus, even for 
moderately large N, the large initial time investment needed to obtain exact 
stationarity may be feasible. 

"Thermalization." The usual way of dealing with initialization bias in 
dynamic Monte Carlo studies is to discard the first T observations, where 
T is chosen large enough so that the distribution of Xr  is very close to the 
stationary distribution n; for example, T=10~exp would usually be 
sufficient [see the discussion surrounding (2.16)]. One then performs 
statistical tests to ensure that the resulting data are indeed free of 
initialization bias; and as an added precaution, one compares runs using 
radically different initial configurations Xo. 

In our case we chose the initial SAW X0 to be a straight rod. 
Assuming Zexp'~N/f~N I+p, we get 10Zexp~150,000 for N=3000  and 
10Zex p ,~  6 0 0 , 0 0 0  for N =  10,000 (see Table II in Section 4.2 for numerical 
data on the acceptance fraction f ) .  These times are comparable to, but less 
than, our typical total run lengths. (In fact, T =  10"~ex p may be too severe a 
requirement when we are primarily interested in global observables; on the 
other hand, T =  10Vint, a is certainly too optimistic, since a rod is very far 
from equilibrium.) 

For most of our runs we used the simple blanket rule T = 200,000, and 
carefully examined our data (for each N) to ensure that no trace of 
initialization bias remained. This was done by dividing the output series of 
106 observations into 20 (or 100) "batches" of consecutive observations and 
looking at the means of the relevant observables within each batch. The 
quantities ~o~v, S 2, and '~f" are maximal for a rod, so the means of the first 
few batches should be significantly higher than the rest; and the batches 
corresponding to observations after time T should be statistically identical. 
An "eyeball" examination of the data (Fig. 4 in Section 4.2) shows that all 
visible traces of initialization bias in o~v, S 2, and '~f" have disappeared by 

11 The estimate A ~ 1.178 for the square lattice is easily obtained from the counts c N in 
Ref. 34, using a first-order Neville-Aitken extrapolation of the sequence Cu/#UN ~-1 with 

= 2.638155 and 7 = 1.34375. 
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time 150,000, even at N =  10,000. To make a more rigorous statistical test 
of the hypothesis that all initialization bias had been removed by trun- 
cation at T, we used the "combined classical and area test ''(43) based on the 
"standardized time series" of Schruben, (44'45) which compares functionals of 
a transformed output series to those of a Brownian bridge. For each N, this 
test showed that there was an initialization bias in the complete output 
series, but not in the truncated series. (It should be noted, however, that 
this test, like many others, may not perform well if correlations of very long 
range (many times the batch width) are present. New statistical tests 
without this flaw would be a valuable asset to practitioners of Monte 
Carlo.) As a further check, we performed runs at N- -  1000 and 2400 with 
both "rod" and "dimerized" starting configurations; the results after 
truncation agree to within statistical error. 

Finally, we remark that T need not be a fixed time, but more generally 
can be a stopping time (that is, a random time such that it can be decided 
whether or not T >  n by looking only at the observations Xo, X1 ..... Xn). In 
fact, it can be shown (4649) for quite general Markov chains that there exists 
a stopping time T having the property that the distribution of X r  is exactly 
the stationary distribution ~. The use of such a stopping time would bring 
the advantages of an "equilibrium start" (i.e., strictly zero initialization 
bias) without requiring a supplementary algorithm for generating samples 
from the equilibrium distribution ~. (Indeed, the Markov chain stopped at 
time T serves itself as an algorithm for generating samples from ~!) For  
example, in the pivot algorithm for ordinary random walk, we can let T be 
the first time such that every location k (0 ~<k~< N - 1 )  has served as a 
pivot point. [It follows from the solution of the coupon-collector's 
problem (5~ that the expected value of T is Nlog  N+ O(N). Note, by the 
way, that this is of slightly a larger order than Texp (by a logarithm). This 
logarithm is apparently the price one must pay for achieving a strictly zero 
initialization bias.] Unfortunately, we do not know of any nontrivial 
statistical-mechanical problem (such as the pivot algorithm for self-avoiding 
walks) in which a computationally feasible procedure for computing such a 
stopping time can be found. 

A Hybrid Scheme. After the completion of our numerical work, we 
devised a "hybrid" initialization scheme that combines some of the features 
of dimerization and thermalization, and may have advantages over both. 
This scheme implements a sequence of pivot-algorithm runs at lengths 
N1 < N2 < ---. From the run at Ni (after it has attained equilibrium), one 
saves (e.g., on disk) a hundred or so statistically independent configurations 
of Ni-step SAWs; we return in a moment to the question of how to ensure 
independence. Then, to generate the initial configuration for the run at 

822/50/l-2-10 
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Ni+l, one tries concatenating these Ni-step SAWs with independently 
generated (Ni+l-Ni)-step SAWs (e.g., generated by dimerization) and 
continues until the first success. The result is a uniformly distributed 
N;+ ~-step SAW, so the run at Ni+l can start in equilibrium. (The runs at 
N~ and Ni + ~ are, to be sure, very slightly correlated. But this only causes a 
slight change in the error bar in the regression determining the critical 
exponents; the estimates for the exponents themselves are still unbiased.) 
The average number of concatenation attempts required is 
CNiCNi+I Ni/CNi+I. For AN=-N~+~-N~ fixed, this approaches A(AN) ~ 1 as 
N~--* ~ (and is smaller for smaller values of Ni). For example, for 
AN= 1000 and d=2,  the average number of concatenation attempts is 

13. The advantage of this initialization procedure is that it permits an 
equilibrium start at Ng+l with only minor computational overhead beyond 
what would have been incurred anyway (the run at Ni). 

The batch of N~-step walks must be statistically independent if the 
resulting Ni+~-step walk is to be correctly distributed. To ensure the 
approximate statistical independence of these walks, they should be 
separated by a large time interval in the pivot-algorithm sequence, e.g., 
At > 10~:ex p. Unfortunately, this requirement can be strictly fulfilled only if 
one makes an extremely long run at N~, of length > 1000"~r p ~ lO00N/f, 
and this requires a computer time roughly of order 1000N 2. The alternative 
is to choose walks separated by a much smaller time At (>>~int.A for global 
observables, but ~Zexp), and hope that the nonindependence of these walks 
does not cause too great a deviation from uniform distribution in the 
resulting N ~  1-step SAW. (The independence of this batch can be further 
enhanced by choosing the walk to be concatenated randomly from among 
the ones not yet chosen, rather than sequentially.) Of course, it would then 
be prudent to "thermalize" the pivot-algorithm run at N~+I for some time 
T before taking data. However, since the starting configuration should be 
reasonably close to uniformly distributed, the needed thermalization time T 
should be much less than that required for a rod start. In fact, we suspect 
that in practice the initialization bias in the run at Ni+I would be undetec- 
table. 

The foregoing discussion shows that initialization can be a serious 
problem in the pivot algorithm, since ~r >> ~int,A for the observables of 
interest. Indeed, while ~int,A for global observables A is only of order N (in 
units of computer time), Zex p is of order N 2, so  the time T required for 
"thermalization" is roughly 10N 2. The time required for a "dimerized" start 
is asymptotically even worse, of order N ~ ~og2N+~2. Thus, for very large N 
the CPU time in the pivot algorithm will be dominated by initialization 
(unless better initialization methods can be devised), and the advantages of 
the pivot algorithm over competing algorithms will be nullified. (The 
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algorithms of Redner and Reynolds (11/ and Berretti and Sokal (13) produce 
one "effectively independent" sample in a time of order N2.) Fortunately, 
these difficulties appear in practice only for N >  10,000. Indeed, for 
N < 3000, dimerization is a feasible alternative, which guarantees the com- 
plete absence of initialization bias. Moreover, the "hybrid" scheme, while 
not resolving any of the questions of principle (a strict implementation 
requires runs of length > 1000N2), should provide in practice a quick way 
of generating almost-equilibrium starts which require only a brief sub- 
sequent thermalization. 

In our work we used both methods of dealing with initialization bias: 
dimerized starts for N~<2400, and thermalization (with a rod start) for 
N/> 2400. (We do not claim that 2400 is any kind of "optimal" boundary.) 
In future work we hope to test the "hybrid" scheme. 

4. N U M E R I C A L  R E S U L T S  

4.1. Pre l iminary  Tests 

In order to test our pivot-algorithm program, we generated 10 7 SAWs 
on the square lattice of lengths N =  15, 20 and compared (~02N) and (S~v) 
with the known exact values from direct enumeration. (34"s1'52) We found 

N =  15: (0925) =47.2319_+0.0560 (47.2177) 

($25) = 6.7847 _+ 0.0049 (6.7843) 

N =  20: (o)22o) = 72.1227 + 0.0940 (72.0765) 

(S~o) = 10.2477 _+ 0.0100 

(95% confidence limits), where the known exact values are shown in 
parentheses. The results agree perfectly to within statistical error (about 
+0.1%). 

In order to test our dimerization program, we generated 106 SAWs on 
the square lattice of length N = 20. We found 

(~O~o) = 72.0755 +0.0184 (72.0765) 

(S~0) = 10.2452 __+ 0.0070 

(95 % confidence limits). Again, the results agree perfectly with the known 
exact value and/or with the pivot-algorithm results to within statistical 
error. 

Our programs used a linear-congruential pseudo-random-number 
generator 

xn+l=axn+b (rood m) (4.!) 
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with multiplier a =  31167285, increment b =  1, and modulus m = 2  48. This 
generator is recommended by Knuth (53) on the basis of its excellent score 
on the spectral test. 

4.2. Results for (tU2N), S2N and Acceptance Fraction 

We performed extensive Monte Carlo runs on SAWs in dimension 
d =  2 (square lattice), of lengths N ranging from 200 to 10,000. Table I 
shows the runs we performed and the CPU time they took; all programs 
were written in FORTRAN 77 and run on a Cyber 170-730 computer. The 
total CPU time for these runs was roughly 300 hr. We used "dimerized" 
starts for N~<2400; for larger values of N, we used "rod" starts. (In 
retrospect, we probably could have pushed the dimerized starts to 

Table I. Summary of Pivot-Algorithm Runs on Square Lattice 

CPU time in pivot algorithm 
CPU time 

Type of Number of in dimerization Total Per iteration per N 

N start iterations (sec) (sec) (#sec) 

200 Dimer 106 2 4800 24.00 

400 Dimer 106 5 8487 21.22 

600 Dimer 106 56 11475 19.13 

800 Dimer 106 330 15022 18.78 

1000 Dimer 106 453 17018 17.02 

1000 Dimer 8 x 106 28 133570 16.70 

1000 Rod 107 - -  169577 16.96 

1200 Dimer 106 223 21084 17.57 

1400 Dimer 106 397 22728 16.23 

1600 Dimer 106 147 23679 14.80 

2000 Dimer 106 784 29833 14.92 

2400 Dimer 106 8835 33747 14.06 

2400 Rod 106 - -  33907 14.13 

3000 Rod 106 - -  41882 13.96 
4000 Rod 106 - -  52928 13.23 
5000 Rod 106 - -  65672 13.13 

6000 Rod 106 74873 12.48 

7000 Rod 106 - -  86702 12.39 

8000 Rod 983060 95894 12.19 

8000 Rod 765595 NA a NA ~ 
9000 Rod 106 - -  108682 12.08 

10000 Rod 106 - -  121428 12.14 

a Datum unavailable because the authors misplaced it. 
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somewhat higher values of N, since the CPU times for dimerization were 
still negligible compared to the total run time.) 

Table II shows the estimates for the mean-square end-to-end distance 
(~o~v), the mean-square radius of gyration ( $ 2 ) ,  and the acceptance frac- 
tion f obtained from these runs. Table III shows the acceptance fractions 
broken down according to symmetry-group operations. Table IV shows the 
estimates for the autocorrelation times %,t,a for the observables A = m~v, 
S 2, raN, and F; here F is the observable 

f~  if the pivot at time t is successful 

F, = ~v if the pivot at time t is not successful 
(4.2 ) 

whose mean value is the acceptance fraction f .  The standard deviations of 
these estimates are shown in parentheses; a discussion of the statistical 
procedures by which these error bars were determined can be found in 
Appendix C. 

We performed least-squares regressions on these data in order to 
extract the critical exponents v and p and the dynamic critical exponent q, 
along with the corresponding critical amplitudes. In this section we discuss 
the static quantities (C02N), ( $ 2 ) ,  and f .  In Section4.3 we discuss the 
dynamic quantities rint,a. 

Log-log graphs of (C02N), ( $ 2 ) ,  and f versus N are so straight that 
there is nothing to be gained by reproducing them here. We fit (cozu), 
( $ 2 ) ,  and f to the Ansatz A N  p . . . .  , by performing weighted least-squares 
regressions of their logarithms against log N, using the a priori error bars 
on the raw data points (Table II) to determine both the weights and the 
error bars. (54) The results are 

(o)~) :  v = 0.7496 _+ 0.0008 

A = 0.7764 -t- 0.0087 

s 2 = 1.41 (20 d.f., level = 11%) 

(S~v) v = 0.7495 + 0.0007 

A = 0.1090 _ 0.0011 

s 2 = 1.40 (20 d.f., level = 11% ) 

f :  p = 0.1926 ___ 0.0008 

A = 0.9572 ___ 0.0052 

s 2 = 1.42 (20 d.f., level = 10 % ) 

(95 % confidence intervals). Here s 2 is the weighted mean-square deviation 
from the regression line; it should be distributed as 1 /9  times a Z 2 random 
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variable with ~ = n - 2  degrees of freedom (d.f.), where n is the number of 
data points. The observed value of s 2 thus provides a goodness-of-fit test 
for the assumed statistical model: an abnormally large value of s 2 would 
indicate either that the pure power-law Ansatz is incorrect (e.g., due to 
corrections to scaling) or else that the claimed error bars on the raw data 
are too small (further investigation would be necessary to determine which 
of these is the true cause), while an abnormally small value of s 2 would 
indicate that the claimed error bars on the raw data are too large. The 
significance level is the probability that s 2 exceeds the observed value, 
assuming that the model is correct. The foregoing data are thus in good 
agreement with the pure power-law Ansatz and with the correctness of our 
raw-data error bars (perhaps the latter are slightly too small). Combining 
the data from (~o~) and ( $ 2 ) ,  we obtain the estimate 

v = 0.7496 + 0.0007 (4.3) 

Table IV. Estimates for  Autocorre la t ion Times Tint, A for  Selected Global 
Observables,  for  Pivot  A lgor i thm on Square Lattice ~ 

N Start Iterations Discard 2~Cint,~9~ 2~'int, ~ 2vint,~N 2Zint,F 

200 Dimer 106 0 19.71 (0.39) 44.94 (1.35) 18.88 (0.37) 1.084 (0.005) 
400 Dimer 106 0 25.04 (0.56) 58.16 (1,98) 22.51 (0.48) 1.065 (0.005) 
600 Dimer 106 0 27.13 (0.63) 66.50 (2.43) 23,49 (0.51) 1.053 (0.005) 
800 Dimer 106 0 28.98 (0.70) 71.56 (2.71) 26.10 (0,60) 1.055 (0.005) 

1000 Dimer 106 0 29.27 (0.71) 68.96 (2.56) 26.51 (0.61) 1.049 (0.005) 
1000 Dimer 8 • 106 0 30.26 (0.26) 72.78 (0.98) 26.67 (0.22) 1.054 (0.002) 
1000 Rod 107 5 • 105 29.88 (0.24) 72.66 (0.90) 26.71 (0.20) 1.058 (0.002) 
1200 Dimer 106 0 30.78 (0.76) 74.50 (2.88) 28.15 (0.67) 1.056 (0.005) 
1400 Dimer 106 0 32.55 (0.83) 79.49 (3.17) 28.25 (0.67) 1.040 (0.005) 
1600 Dimer 106 0 33.67 (0.88) 83.98 (3.44) 28.76 (0.69) 1.050 (0.005) 
2000 Dimer 106 0 38.00 (1.05) 87.16 (3.64) 31.93 (0.81) 1.054 (0.005) 
2400 Dimer 106 0 38.11 (1.05) 94.73 (4.13) 31.12 (0.78) 1.029 (0.005) 
2400 Rod 106 2• 105 36.24 (1.09) 84.96 (3.92) 32.32 (0.92) 1.045 (0.006) 
3000 Rod 106 2• 105 38.33 (1.19) 90.93 (4.34) 32.85 (0.94) 1.045 (0.006) 
4000 Rod 106 2• 105 39.78 (1.26) 93.54 (4.53) 34.73 (1.02) 1.028 (0.006) 
5000 Rod 106 2x  105 42.38 (1.38) 101.67 (5.13) 37.75 (1.16) 1.035 (0.006) 
6000 Rod 106 2•  ~ 42.59 (1.39) 99.19 (4.94) 38.77 (1,21) 1.043 (0.006) 
7000 Rod 106 2•  ~ 42.56 (1.39) 101.93 (5.15) 38.99 (1.22) 1.036 (0.006) 
8000 Rod 983060 2x105 47.47 (1.66) 119.39 (6.59) 39.85 (1.27) 1.032 (0.006) 
8000 Rod 765595 2• 105 44.64 (1.78) 107.74 (6.65) 40.73 (1.55) 1.034 (0.007) 
9000 Rod 106 2• 47.54 (1.64) 116.76 (6.31) 43.04 (1.41) 1.029 (0.006) 

10000 Rod 106 2x  105 47.77 (1.65) 114.78 (6.15) 43.04 (1.41) 1.031 (0.006) 

a Standard deviation is shown in parentheses. "Discard" indicates number of iterations discarded 
for thermalization. 
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(The estimates of (~o 2 )  and ( S  2 )  in each run are strongly correlated, so it 
would be incorrect to combine the two estimates of v as if they were 
independent. ) 

We also tried fits in which the data point(s) from the lowest value(s) 
of N were discarded, as a check for the possible presence of corrections to 
scaling. When the point at N =  200 was discarded, s 2 decreased slightly (to 
1.36, 1.29, and 1.24, respectively), while the exponent estimates shifted 
slightly (to 0.7499, 0.7499, and 0.1921). While it is tempting to prefer these 
new estimates for v, which are closer to the believed exact value (33) v = 3/4, 
we see no valid statistical reason for doing so, in view of the negligible 
change in the goodness of fit. 

As a further test for corrections to scaling, we fit ( JN) ,  (S2N), and f 
to the Ansatz AN p . . . .  (1 + C/N~), for a range of fixed values of A between 
0.1 and 2. In all cases the estimated correction-to-scaling amplitude C is 
less than 1.8 times its standard deviation, which is consistent with C = 0 .  
For example, for A = 1 we obtain 

(co2) :  v = 0.7503 _+ 0.0013 

A = 0.7673 _ 0.0158 

C = 1.48 _+ 2.17 

s2=  1.39 (19 d.f., level= 12%) 

( S  2 )  v = 0.7503 _ 0.0012 

A = 0.1076 + 0.0020 

C = 1.55 _ 1.89 

s 2 = 1.33 (19 d.f., level = 16%) 

f :  p = 0.1918 + 0.0013 

A = 0.9511 _ 0.0096 

C = 0.79 ___ 1.05 

s 2 = 1.37 (19 d.f., level = 14%) 

(95% confidence intervals). Thus, we find no statistically significant 
evidence for corrections to scaling in <coL>, <S~N), or f in the range 
200 ~< N~< 10000. 

This is not to say, of course, that corrections to scaling are absent in 
the two-dimensional self-avoiding walk; the point is simply that we are 
working at such high values of N that any corrections to scaling (whether 
analytic or nonanalytic) are unobservable compared to our statistical error 
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(raw-data standard deviations of ~0.1-0.5%).  Since our goal here is to 
obtain accurate estimates for the leading exponents v and p, free from 
systematic error due to corrections to scaling, the absence of significant 
corrections to scaling is an asset rather than a liability. However, some 
workers have sought to measure corrections to scaling, and even to 
estimate the leading correction-to-scaling exponent A1, using either series- 
extrapolation (49'55-61) or Monte Carlo (61~4"17) methods. It seems to us that 
such attempts are likely to be inconclusive. As we have seen, at large N the 
corrections to scaling are very small. On the other hand, some 
workers (61'64'17) have sought to determine the leading correction-to-scaling 
exponent A 1 by studying walks of intermediate length (e.g., 10 < N <  100), 
for which the corrections to scaling would be larger than for very long 
walks. In our opinion this procedure is not justified: it is true that reducing 
N makes the leading correction-to-scaling term N -~1 more prominent com- 
pared to the dominant term, but it also makes the second correction-to- 
scaling term N -~2 more prominent compared to the first one. Thus, this 
procedure does not really estimate the exponent A1, which, like other 
critical exponents, is defined only via the limit N--, 0% but rather some 
effective exponent Aeff, which has no intrinsic physical meaning. We do not 
feel qualified to pass judgment on the series-extrapolation methods, but we 
suspect that at currently available series lengths ( N <  27) they are likely to 
fall into a similar trap. 

We also computed the amplitudes in the asymptotic relations 
~ A  N 2v with v forced to be equal to the (OO:N)~A~N 2v and (S2N)~ s , 

believed exact value (33) 3/4. We found A~ = 0.7719 _+ 0.0010 and A s  = 
0.10830+0.00012 (95% confidence intervals). These estimates are con- 
sistent with those of Rapaport, (63) but are a factor of 7-10 more precise. 

The ratios YN = -- (S2N)/(O9~) are believed to converge as N--+ ~ to a 
constant Y~ which depends only on the dimension of the lattice. Our data 
(Table II) show a spectacular constancy of YN over the range 200~< 
N<~ 10000: each observed value lies in the narrow interval (0.1395, 0.1412) 
and has a standard deviation of approximately 0.001. For  a more rigorous 
test, we performed a least-squares fit of YN against B + C/N; the result is 
B=0.14028 +0.00050, C=0.01  +0.34 (95% confidence intervals) with 
s2=0.13 (20 d.f., level >99.999%).  This estimate of C is consistent with 
zero: there is no detectable variation of YN with N in the range 200 ~< 
N~< 10000. We therefore redid the fit assuming C = 0 ;  the result is Y~ = 
B=0.14029+0.00033 (95% confidence interval) with s2=0.12 (21 d.f., 
level > 99.999 %). The extremely low values for s 2 indicate that the true 
error bars on ( $ 2 ) / ( c 0  2 )  are about a factor of three smaller than those 
shown in Table II, as expected (see Appendix C); and the true error bar on 
Yoo is likewise about a factor of three smaller than that given above, 
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namely Y ~ = 0 . 1 4 0 2 9 _ 0 . 0 0 0 1 2 .  This estimate can be compared  with 
previous estimates: 

Monte Carlo, square lattice, 20 ~< N~< 600(651: 

Monte Carlo, square lattice, 160 ~< N~< 2400(63): 

Monte Carlo, triangular lattice, 120 ~< N~< 2400163h 

extrapolation from N ~< 15, square lattice{52): 

extrapolation from N ~< 10, triangular lattice{S2): 

Y~ = 0. I45 + 0.012 

Y~ = 0.14035 _+ 0.00054 

Y~ = 0.14018 + 0.00028 

Y~ = 0.140 _+ 0.001 

Y~ = 0.140 _+ 0.001 

(95% confidence intervals). Ou r  values thus agree very closely with the 
estimates of Rapapor t  (63) and D o m b  and Hioe, (52) but are a factor of 2-8 
more precise. (In three dimensions, however,  our  preliminary results are 
less favorable to D o m b  and Hioe; see Section 5.1.) See also Note  Added in 
Proof. 

Finally, we analyzed the acceptance fractions for individual symmetry-  
group elements g. For  90 ~ rotations,  axis reflections, and diagonal  
reflections, log- log  graphs of f versus N show no observable curvature. 
Least-squares fits to the pure power- law Ansatz f =  A N  - p  yield 

90 ~ rotat ions:  p = 0.1637 _+ 0.0020 

axis reflections: 

diagonal  reflections: 

A =0.916_+0.015 

s2=0 .85  (14d.f., l e v e l = 6 1 % )  

p = 0.1967 + 0.0021 

A = 1.136 _+ 0.019 

s~-=0.98 (14 d.f., level = 4 7 % )  

p = 0.1953 _ 0.0022 

A = 1.038 +0 .018  

s2=  1.21 (14d.f., l e v e l = 2 6 % )  

(95 % confidence intervals). On  the other hand, the data  for 180 ~ rotat ions 
show significant curvature  at the lowest value of  N (1000). Fits to a pure 
power law with and without  the N =  1000 data  points yield 

all data  points: p = 0.4898 _+ 0.0091 

A = 1 .710+0.119 

s 2=1 .93  ( 1 4 d . f . , l e v e l = 2 % )  

N = 1000 discarded: p = 0.5050 _+ 0.0133 

A = 1.943 ___ 0.208 

s 2 =  1.26 (12 d.f., level = 2 4 % )  
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(95% confidence intervals). Truncation to N>~ 1400 thus appears to have 
removed all observable corrections to scaling. Fits to the Ansatz 
AN p . . . .  (1  + C/N ~) for a range of fixed values of A confirm this assessment: 
if the N =  1000 data points are discarded, the correction-to-scaling 
amplitude C is in all cases less than half its standard deviation, hence con- 
sistent with zero. (We find it strange that corrections to scaling should be 
so much stronger at N =  1000 than at N =  1400, but that is what the data 
seem to say.) All in all, for 180 ~ rotations we estimate p =0.505 _+ 0.03 (we 
have increased the error bar because of the uncertainty regarding correc- 
tions to scaling). This estimate is not very precise, but it does resoundingly 
confirm the conclusion of the series analysis (Appendix A) that the accep- 
tance-fraction exponents are different for different group elements g. 

Table V. Data for ( ~ v )  and ( S ~ )  ~ 

N =  200 Wall-Erpenbeck ~65) (09~oo) = 2226 (47) 
M a c D o n a l d e t a L  ~16~ (o92oo)=2201 (19) 
This work (Table II) (o922~) = 2195.2 (6.5) 

N = 4 0 0  Wall-Erpenbeck ~65~ (co42oo)=6037 (177) 
This work (Table II) (0942oo) = 6153.9 (20.5) 

N =  600 Wall-Erpenbeck 16~ (096Zoo) = 9732 (456) 
Mandel (66) (0962oo) = 11470 (149) 
MacDonald et al. (16~ (09200) = 11586 (169) 
This work (Table II) (09~oo) = 11335.5 (39.4) 

N =  800 MacDonald et a[. (16) (092oo) = 17631 (292) 
This work (Table II) (09]oo) = 17556.7 (62.9) 

N=1000  M a c D o n a l d e t a l .  116) (09~0oo)=25394 (492) 
This work (Table II) (~O~0o0) = 24418.2 (20.7) 

N =  1200 Rapaport (63) (09~2oo) = 31923.1 (192) 
This work (Table If) (09220 o ) = 32041.0 (118.7) 

N =  2400 Rapaport (63) (0924oo) = 90963.2 (546) 
This work (Table II) (09~40o) = 90400.0 (275.9) 

($2oo) = 317 (3.8) 

(S~oo) = 308.07 (0.78) 

(5"420o)=870 (14) 
(S4Zoo) = 864.35 (2.52) 

($2oo) = 1526 (37) 

(S6Zoo) = 1593.66 (4.96) 

($82oo) = 2454.96 (7.94) 

(S~ooo) = 3424.07 (2.59) 

(S~2oo) = 4503.13 (18.0) 
(S~Z2oo) = 4500.06 (14.82) 

(SzZ4oo) = 12740.28 (51) 
($24oo) = 12735.9 (34.7) 

Standard deviations are shown in parentheses. For Rapaport and Mandel, the standard 
deviations are those stated by the authors. For Wall and Erpenbeck and MacDonald et al., 

who give no error bars, the standard deviations were inferred based on our measured values 
for (092), (09~v), (S~v), ( $ 4 )  together with the assumption that all their samples were 
independent. This assumption is probably close to correct in the case of MacDonald et aL, 

since they used a pivot algorithm and took data once every ~60  iterations, which is 
significantly greater than our measured values for zint,,~ (see Table IV). However, in the 
enrichment algorithm invented and used by Wall and Erpenbeck, it is very difficult to 
estimate a priori the correlations within the batch of walks generated by a single s tar t - -so  
the assumption of independence may well be overoptimistic. Indeed, Rapaport, who also 
used the enrichment algorithm, found error bars about twice as large as those that would 
have been obtained under the assumption of independence. 
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As explained in Section 3.6, the initialization of the pivot algorithm is 
a subtle matter: for the "rod" starts, it is essential to verify that the 
"thermalization" interval (see the "Discard" column in Tables II-IV) is 
sufficiently large; otherwise the raw data would be afflicted with a severe 
systematic error. In Fig. 4 we plot the means of o) 2, S2N, and F over batches 
of width 10,000, as a function of time (batch number); this is for the run at 
N = 10,000, which obviously poses the most severe test. All visible traces of 
initialization bias have disappeared by time 150,000 at the latest. The 
"combined classical and area test" of Goldsman C431 confirms that there is 
an initialization bias in the complete output series, but not in the truncated 
series whenever the truncation interval is greater than 50,000. 

Finally, for completeness, in Table V we compare our raw data 
for (09 2 ) and (S2N) with the results of previous workers. Wall 
and Erpenbeck (65) and Rapaport (63) used the enrichment algorithm, (67,1~ 
Mandel (66) used the slithering-snake (reptation) algorithm, (68 70,66),12 and 
MacDonald e t a L  (16) used the pivot algorithm. The estimates of Wall 
Erpenbeck, Mandel, and MacDonald et al. are consistent with ours (except 
Wall and Erpenbeck's (a)~oo)), but they have rather large error bars. 
Rapaport 's estimates, on the other hand, agree very closely with ours, and 
have error bars of the same order of magnitude. Since he and we used 
radically different algorithms, this agreement is compelling evidence that 
both his programs and ours are correct! 

4.3. Results for Autocorre la t ion  Times 

We now turn to the estimates for autocorrelation times (Table IV) and 
attempt to estimate the dynamic critical exponent q ( ' t i n t ,  A ~ Nq).  

Log-log plots of ~'int,A versus N show no observable curvature, except 
that for A = ~O~v and SZN the N = 200 point is anomalously low. We therefore 
f i t  l'int,cO2N , Tint,S 2, and "tint,co N to the pure power-law Ansatz A N  q, using the 
methods explained above, trying fits both with and without the N =  200 
data point. Using all data points, we find 

~'int,w2 : q = 0.218 + 0.010 

A = 3.32 + 0.25 

s 2 = 1.97 (20 d.f., level = 0.6 % ) 

12Note that the slithering-snake algorithm is nonergodic. ~6~71) Thus, the Monte Carlo 
estimates for (~02N) converge in the limit of infinite sample size to the mean value of ~02u over 
the ergodie class of a straight rod, which is presumably slightly larger than the average over 
all SAWs. A priori it is difficult to estimate the magnitude of this systematic error. The close 
agreement between Mandel's estimate for (~062oo) and our own indicates that the systematic 
error in the slithering-snake algorithm at N = 600 does not exceed about 1%. 
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T i n t , S  2 [ 

Tint,coN 

q = 0.225 + 0.016 

A = 7.58 _ 0.88 

S 2 = 1.70 (20 d.f., level = 3 % ) 

q = 0.205 _+ 0.010 

A = 3.23 _ 0.23 

s 2 = 0.57 (20 d.f., level = 93 % ) 

(95% confidence intervals). When  the point  at N = 2 0 0  is discarded 
(leaving only N~> 400), the goodness-of-fi t  improves  dramatical ly ,  and the 
exponent  est imates shift slightly downward :  

"~int,a~2: q = 0.206 __+ 0.012 

A = 3.64 + 0.32 

s 2 = 1.23 (19 d.f., level = 2 2 % )  

Tint,S2: q = 0.206 __ 0.019 

A = 8.79 + 1.19 

s 2 = 0 . 8 4  (19 d.f., level = 6 6 % )  

2Tint,coN: q = 0.203 ----- 0.011 

A --- 3.29 + 0.27 

s 2 -= 0.56 (19 d.f., level = 93 % )  

(95 % confidence intervals). Discarding more  low-N data  points  makes  no 
further change in the fit. These latter values of q are within error  bars  of 
our  est imate for p (,,~0.193), in accordance  with our  heuristic a rgument  
(first half  of  Section 3.2) that  q = p. 

Fits to the form Tint, A "~  Nq(1 + C/N ~) for a range of fixed values of A 
confirm the absence of significant correct ions to scaling for N~> 400: in all 
cases the correct ion-to-scal ing ampl i tude  C is less than  1.2 times its 
s tandard  deviation,  hence consistent  with zero. 

The  behavior  of the pivot  a lgor i thm for ord inary  r a n d o m  walk (Sec- 
t ion 3.3) suggests the possibili ty tha t  Tint, A might  behave as ~ N P l o g  N, 
where p is the acceptance-fract ion exponent .  To  test this possibility, we fit 
Ti,t,A to the form ,-,~Nq(log N) D for a variety of fixed exponents  D between 
0 and 2. Decent  fits can be obta ined  for all these values of D, with the 
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leading exponent q varying from ~0.20 at D = 0  to ~0.08 at D =  1 to 
-0 .05 at D = 2 (this latter estimate is of course absurd). However, it 

seems implausible on theoretical grounds that q should be smaller than the 
acceptance-fraction exponent p; and indeed the only theoretical basis for 
considering a logarithm at all was the idea that q = p  with D = 1. This 
latter exponent combination is strongly ruled out; and if we insist that 
q>~p~0.19,  then D cannot be larger than about 0.2-0.3. The numerical 
evidence for the d =  2 self-avoiding walk thus seems consistent with a pure 
power-law behavior "Cint,A'~N q with q = p ,  and inconsistent with the 
proposed logarithmic behavior. 

Remark. Our windowing procedure (see Appendix C) introduces a 
small downward bias in the estimates of Zint,A (probably a few percent). We 
think that the relative bias is roughly constant as a function of N. However, 
it is at least conceivable that the windowing algorithm introduces an N- 
dependent bias, which could obliterate the evidence for a logarithm if it 
existed. Although we do not believe that this occurred, we do want to raise 
the possibility. Increased confidence on this point would require a very 

Table VI. Statistics on Computat ional  Complexity of Self -Avoidance 
Checking, for Pivot Algor i thm on Square Lattice a 

Total work per successful pivot 
Type of Number of 

N start iterations E(work I failure ) Failures Success Total 

1000 Dimer 8 • 106 55.3 163.6 + 1000 = 1163.6 
1000 Rod 107 55.0 162.7 + 1000 = 1162.7 
1400 Dimer 106 70.3 225.4 + 1400 = 1625.4 
1600 Dimer 106 78.6 261.9 + 1600 = 1861.9 
2000 Dimer 106 91.0 320.4 + 2000 = 2320.4 
2400 Dimer 106 104.6 386.3 + 2400 = 2786.3 
2400 Rod 106 105.4 385.5 + 2400 = 2785.5 
3000 Rod 106 123.0 475.3 + 3000 = 3475.3 
4000 Rod 106 153.6 636.4 + 4000 = 4636.4 
5000 Rod 106 181.7 794.0 + 5000 = 5794.0 
6000 Rod 106 208.7 943.3 + 6000 = 6943.3 
7000 Rod 106 234.9 1094.9 + 7000 = 8094.9 
9000 Rod 106 285.5 1417.5 + 9000 = 10417.5 

10000 Rod 106 309.9 1568.7 + 10000 = 11568.7 

a Data refer to entire run, including "thermalization." (Note that these data are available for 
only some of our runs.) "Work" is the number of insertions into the hash table. Column 4 is 
the mean work per failed pivot. Column 5 is the mean work spent on failed pivots between 
two consecutive successful pivots. 
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high-precision Monte Carlo study, together with a rather sophisticated 
statistical analysis. 

4.4. Results for Computational Complexity 

We now return to the predictions made in Section 3.4 regarding the 
amount of work required by the pivot algorithm. The main prediction, 
from (3.30), is that the average amount of work spent in self-avoidance 
checking of failed moves per successful pivot should be linear in N. To test 
this prediction, we fit a power law A N  B to the fifth column of Table VI 
(using weights proportional to the length of the run); the result was B =  
0.982 _+ 0.004, A = 0.185 + 0.005 (95 % confidence intervals). [-Since the raw 
data in Table VI lack a priori error bars, these confidence intervals were 
computed from the residual in the least-squares fit, using the Student t-test. 
Thus, the residual cannot be used as a test of the goodness of fit, as it was 
in the preceding cases.] This is strong support for at least the approximate 
linearity of the work per success as a function of N. The observed dis- 
crepancy of the exponent B from 1--more than four times the alleged error 
bar--should probably not be taken too seriously: it presumably reflects 
corrections to scaling not taken into account in the assumed power-law 
form. The value of A indicates that only about 15% of the work is 
"wasted" on failed pivots. 

We also fit a power law to the "E(workl failure)" column of Table VI, 
obtaining an exponent 0.745 +0.005. The predicted value, from (3.29), is 
1 - p  ~ 0.807. We do not know whether this discrepancy is significant. 

Finally, we fit a power law to the "CPU time per iteration per N" 
column of Table I, obtaining an exponent -0.173 +0.017. The predicted 
value, from (3.27), is - p ~  -0.193, in good agreement. 

We remark that the data considered in this section come from the 
entire run, including the "thermalization" interval. Thus, they may not 
precisely measure the behavior of the pivot algorithm in equilibrium. 

5. PROSPECTS FOR THE FUTURE 

5.1. Three and Four Dimensions 

The extension of this study to SAWs in higher dimensions is almost 
trivial. In any dimension, the O(N) work per "effectively independent" 
sample should continue to hold, with a constant at worst proportional to 
the dimension. Runs in dimension d =  3 (simple cubic lattice) are now in 
progress; preliminary data from these runs (with 200~<N~<3000) are 

822/50/1-2-ll 
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shown in Table  VII.  ~3 A leas t -squares  regression to these pre l iminary  da t a  
yields the es t imates  

<~o~>: v = 0.5907 + 0.0014 

<S2N> V = 0.5939 ___ 0.0020 

f :  p = 0.1069 _ 0.0009 

(95% confidence intervals) .  These es t imates  for v are in excellent  
agreement  with the la tes t  se r ies -ex t rapola t ion  es t imate  (34) v = 0.592 _+ 0.002 
and with R a p a p o r t ' s  (61) M o n t e  Car lo  es t imate  v = 0.592 _+ 0.004 (95 % con-  
fidence interval) .  S te l lman and G a n s  {18) ob ta ined  a roughly  s imilar  es t imate  

for p ( ~ 0.08) in their  s tudy of the p ivo t  a lgo r i thm for con t inuum po lyme r  
chains (of lengths  19 ~< N~< 297) in d =  3. 

As no ted  previously,  the ra t ios  YN= <$2> /<6~  are bel ieved to con- 
verge as N ~ oo to a cons tan t  Yo~ which depends  only on the d imens ion  of 

the lattice. W e  per formed  a leas t -squares  fit of YN agains t  A + B/N; the 
result  is A = 0.1603 +_ 0.0017, B = - 0 . 4 1  _+ 0.53 (95 % confidence in tervals)  
with s 2 = 0.18 (7 d.f., level = 99 %).  This ext remely  low value for s 2 indicates  

that  the t rue e r ror  bars  on (S~>/<CO2N> are a b o u t  a factor  of two smal ler  
than  those  shown in Table  VII ,  as expected (see Append ix  C);  and  the true 
e r ror  b a r  on Y~o is l ikewise a b o u t  a factor  of two smal ler  than  tha t  given 
above,  namely  Y ~ - - 0 . 1 6 0 3  _+ 0.0008. This  es t imate  can be c o m p a r e d  with 
previous  est imates:  

Monte Carlo, tetrahedral lattice, 40 ~< N <~ 600(6s): 

Monte Carlo, simple cubic lattice, 120 ~< N~< 2400{6n: 

Monte Carlo, body-centered-cubic lattice, 120 ~< N ~< 2400 ~61): 

extrapolation from N ~< 10, simple cubic lattice(521: 

extrapolation from N ~< 8, body-centered-cubic lattice(S2): 

extrapolation from N ~< 7, face-centered cubic latticeCS2): 

Y~ = 0.157 .+_+ 0.004 

Y~ = 0.1597 +_ 0.0006 

Y~ = 0.1594 +__ 0.0003 

Y~ = 0.155 + 0.001 

Y~ =0.155 +__ 0.001 

Y~ = 0.155 + 0.001 

O u r  es t imate  of Y~ agrees well with R a p a p o r t ' s  (6~) value,  bu t  is a factor  of 
2-3 less precise. However ,  these es t imates  disagree  significantly with the 
D o m b - H i o e  (52) values. Their  ex t r apo la t ion  predicts  that  YN decreases as N 

13 The error bars in Table VII should not be taken too seriously, as we have not yet had time 
to do a full time-series analysis as described in Appendix C. All error bars except those for 
the acceptance fraction are based on Schruben's {45) "combined classical sum-interval 
estimator." Error bars for the acceptance fraction are based on the formula for independent 
random variables, standard deviation = [f(1 -f)/n] in (here n is the sample size), since we 
expect the time series {F,} to be essentially uncorrelated (Table II). 
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increases (see Fig. 2 of Ref. 52), which contradicts our observations 
(Table VII) and those of Rapaport. (m) Clearly, extrapolation from such 
small values of N can be very misleading. See also Note Added in Proof. 

We remark that dimerization works better in d =  3 than in d =  2 (due 
to the smaller value of ~ -  1), so we can go to higher N with an exact 
equilibrium start. 

The pivot algorithm can also be used in dimension d =  4 to look for 
logarithmic corrections to scaling as predicted by renormalization-group 
theory. (72/In particular, we hope to test the predicted logarithmic violation 
of hyperscaling (see Section 5.3), which is equivalent to the triviality of the 
corresponding (0-component!) r quantum field theory. (8'9) 

5.2.  E s t i m a t i o n  o f  1.1 and  Y 

The most natural way to estimate the connective cons tant / t  and the 
critical exponent 7 is to use an algorithm working in a grand canonical 
(variable-N) ensemble (e.g., Redner and Reynolds m) or Berretti and 
Sokal(t3)). The canonical (fixed-N) ensemble, in which the pivot algorithm 
works, is natural for estimating v, but rather unnatural for estimating /~ 
and ~. [The point is that v is defined in terms of expectation values in 
the canonical ensemble, while g and ~ involve the partition function 
(normalization factor) for this ensemble, which is not directly observable.] 
There do exist, however, at least two possible schemes for estimating p and 

from the pivot-algorithm data, as we now proceed to explain. 
For  any N-step SAW co, let Ak(~o) be the number of extensions of o~ to 

an (N+k) - s t ep  SAW: 

Ak(~o)-=-- #{co'e~: C0oO~'e~g+~} (5.1) 

where the open dot denotes concatenation. 14 The expected value of A~(e)), 
averaging over o9~5~, is CN+k/CN. Its asymptotic behavior as N ~  oe at 
fixed k is 

CN+k~#k[1-t k(7--l) (1)1 
C N T q- 0 (5.2) 

One approach, therefore, is to take data on the observable Ak for some 
fixed, small value of k (e.g., k = 4 )  as part of the pivot-algorithm 
simulation: just maintain a list of all k-step SAWs, and for each co count 
how many of these k-step SAWs can be successfully appended to e). This 

14 That is, if e)= (090 ..... ~0N) and o)'= (co; ..... rn~,) with co o = r =0, then ~o o~o'= (O9o ..... ~0N, 
C0N+~01 ..... O)N + ~0~). 
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yields an unbiased estimate of ( A k ) = C N + k / C  N. By doing this at several 
values of N and carrying out a least-squares regression to the Ansatz (5.2), 
one can in principle estimate # and 7. Unfortunately, the estimates 
obtained in this way are likely to be mediocre for p and even worse for 7. 
This can be ascertained quantitatively by working out the theory of the 
least-squares regression and computing the variance of the estimators /i 
and i; we hope to do this in the near future. 

An alternative approach is to run two independent pivot algorithms in 
parallel, at the same value of N, and attempt to concatenate the walks 
produced. The estimator here is the random variable 

B(eo~l), co(2)) = {10 if (/) (1) o (L) (2) ~: ~2N 
if (L)(1) o (D(2) ~ ~2N (5.3) 

whose mean is p2N~C2N/C2N and whose variance is P2N(1--p2N). The 
asymptotic behavior of PZN as N ~ ~ is 

2 ~ 2~-1A -1N-(~-1) P2N ~" C2N/CN ~ (5.4) 

where the amplitude A is defined by (3.46). Thus, by measuring (B~ = Pz~v 
at several values of N and carrying out a least-squares regression to the 
Ansatz (5.4), one can in principle estimate ~ (and also A, but not/~). Again, 
we are unsure of the quality of these estimates; it is not hard to compute 
the variance of the estimator ~, and we hope to do so in the near future. 

Finally, we note that the random variables Ak and B are less "global" 
than the observables we have been studying in this paper (such as o92 
and $2), since the intersection or not of two SAWs is most strongly 
influenced by the behavior of those SAWs near the joining point. Thus, it is 
quite possible that the autocorrelation times ~int,Ak and ~i,t,B in the standard 
pivot algorithm will have a critical exponent q that is larger than that 
found for global observables. If true, this would significantly degrade the 
efficiency in estimates of # and ~. On the other hand, the probabilities P0, 
P1 ..... PN-1 for choosing the pivot location are free parameters in the pivot 
algorithm: while we have heretofore chosen a uniform distribution Pi--- l /N,  
other distributions are permissible and might be advantageous in certain 
circumstances. In particular, the autocorrelation time of the observables Ak 
and B might be reduced by choosing these probabilities so as to focus 
efforts near the joining point(s), e.g., p ; ~  ( N - i )  -~ for some exponent 
tr > 0. One could then empirically determine the optimal value of re. (On 
the other hand, the use of ~cr would probably increase the 
autocorrelation time for conventional global observables such as co~v and 
S~v. So one would either have to choose a compromise value of K, or else 
perform separate runs for estimating v and for estimating # and 7-) 



164 Madras and Sokal 

5.3. Est imat ion of A4 and a Test of Hyperscal ing 

Let 0)~i) and 0) (2) be, respectively, Nl-step and N2-step SAWs, and 
define T(0) (1), 0)(2)) to be the number of translates of 0)(2) that somewhere 
intersect 0)(1): 

T(0)(1), 0)(2)) - #{xeT/a:0)(1)~(0)(2)+x):/:f25} (5.5a) 

= ~ (0)(1)__ 0)(2)) (5.5b) 

where A - B = _ { y - z : y e A ,  zeB}.  The expected value of T(0)(1),0)(2)), 
averaging over independent walks 0)(1t e ~N1 and 0)(2t s SEN2, is CN1,N]CNICN2. 
This quantity has the asymptotic behavior 

CNI,N2/CN1CN2 ~ N21 m 'h(N1/N2) (5.6) 

where h is a scaling function [see (2.9)]. It is thus possible to estimate the 
critical exponent 2A 4 - 7  by running two independent pivot algorithms and 
measuring T(0) (1), 0)(2)). (Typically one would run at N1 = N2=N for a 
sequence of values of N.) In particular, this allows a direct Monte Carlo 
test of the hyperscaling relation dv = 2A4 - 7, which plays a central role in 
quantum field theory. (a'9) (Note that an independent measurement of 7 is 
not needed.) 

The efficient determination of T(0) ~1), 0)(2)) for a specified pair of walks 
(0)(1), 0)(2/) is a very interesting and nontrivial problem in computer science. 
We see two broad approaches: 

1. Deterministic algorithms which compute T(0) (1), co (2)) exactly. 

2. Monte Carlo algorithms which produce an unbiased (or almost 
unbiased) estimator of T(0) (1), 0)(2)). 

We discuss each of these approaches in turn. 

Deterministic Algorithms. A straightforward method for determining 
T(0) (1), 09 (2)) is to compute x = 0)I 1) -09} 2) for each of the (N 1 + 1)(N2 + 1) 
pairs (i, j), write these points x into a hash table (see Section 3.4), and 
count how many distinct values of x are obtained. Unfortunately, this 
requires a work of order N1N2, i.e., order N 2 if N1 = N2 = N. By contrast, 
we expect that one "effectively independent" sample of the pair (0)(1), 0)(21) 
can be produced in a CPU time of order N (if Z~nt, r'-~ N p) or in any case 
not much greater. So this algorithm would spend more time analyzing the 
data than producing i t!--and the overall computational complexity per 
"effectively independent" sample would be increased from N to N 2, thereby 
nullifying the advantage of the pivot algorithm over previous (lm3) 
algorithms. (We remark, however, that it may be possible to devise deter- 
ministic algorithms that are more efficient than this elementary one.) 
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Monte Carlo Algorithms. An alternative approach is to estimate 
T(0) (1), 0) (2)) using an auxiliary Monte Carlo algorithm. The statistical 
fluctuations in this auxiliary Monte Carlo would then be added to those in 
the main Monte Carlo program; but this is acceptable provided that the 
former are comparable to or smaller than the latter. 

An elegant Monte Carlo algorithm for estimating T(0) (1), co (2~) (and 
somewhat more general combinatorial problems) has been devised by 
Karp and Luby, (73) as we now briefly explain. Let $1 ..... SN be a collection 
of sets, each of cardinality M, and suppose we want to estimate the 
cardinality of S* - [)u= 1 Si" [In our case, N =  N~ + 1, M = N 2 + 1, Si = 
{0)11)i- 0))2): j =  0,..., N2} for 1 <<,i<~N 1 + 1, and T(0) (l), 0)(2))= # (S*).] To 
get an unbiased estimator Z of # (S*), we execute the following algorithm: 

1. Choose ie  { 1 ..... N} at random, and then choose x E S~ at random. 
[In our case, we take x = co11)~ -0)}~), where j is chosen at random 
from {0 ..... N2}.] Set t = 1. 

2. Choose k e  {1 ..... N} at random. 

3. If x e Sk, then go to step 4. If x q! Sk, then increment t by 1 and go 
to step 2. 

4. P u t Z = M t .  

Then E(Z)= T(0) (1), 0)(2)) because 
N 

E(Z) = M ~ E(t[x is in exactly l of the sets $1 ,..., SN) 
l - - 1  

x Prob(x is in exac t ly /o f  the sets $1 ..... SN) 

# {x: x is in exactly l of the sets $1 ,..., SN}'~ 

J NM 

= # (S*) (5.7) 

Here we used the fact that 

,( Prob(t  = k lx is in exactly l of the sets S~ ..... SN) = ~ 1 -- (5.8) 

Similarly, the variance of the random variable Z can be computed; it 
depends on the overlap structure of the sets $1 ..... SN, but lower and upper 
bounds are 

# ( S * ) [ # ( S * ) - M ]  -%< var(Z) 

<~ [ 2 M N -  # ( S * ) ] [ # ( S * ) - M ]  (5.9a) 

<~ 2MN # (S*) (5.9b) 
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Note that, using a hash table, each step in this algorithm can be performed 
in a time of order 1; thus, the total run time of the algorithm is of order 
t - Z / M ,  which on average is #(S*)/M. 

The idea is now to repeat this basic algorithm R times for the same 
pair ((o ~1~, ~o(z)), where R is a suitably chosen number, and to estimate T -  
T(co (1), co (2)) by the sample mean 

2 R ="~ Z r 

There are several alternative approaches, depending on how the number R 
is chosen: 

(a) The simplest approach is to let R be a fixed number [-the same 
for all pairs (co ~), a)~2))], chosen so that for "typical" pairs (a~ ~*), ~o ~2)) the 
relative standard deviation of ZR is suitably small (say 20%). [In view of 
(5.9b), it is sufficient to take R of order MN/#(S*)"~N 2-2A4+y ( ~ N  2-av 

if hyperscaling holds).] Then, for some pairs (~o ~ co ~2~) the number R will 
be too small and the variance of ZR will be larger than desired, while for 
other pairs the run-time t will be too long and the variance of ZR will be 
smaller than is really needed. But such pairs will hopefully be rare enough 
so that neither the overall variance nor the overall run-time is adversely 
affected. 

(b) A "sequential-sampling" approach was proposed by Karp and 
Luby(731: here the basic algorithm is repeated until step 3 has been perfor- 
med precisely CN times, where C is a chosen constant. Thus, R is a random 
time defined as the largest number such that Z~= 1 Zr ~ CMN. In this case 
ZR is a biased estimator of T =  T(~o ~1), co~2)), because R is correlated with 
the data Z1 ..... ZR. [The alternative estimators ZR+I,  CMN/R, and 
CMN/(R + 1) are also biased.] However, the bias can be bounded, and it 
can be shown ~74) that using any of these four estimators, with a suitable 
choice of C we can get an estimate 2? satisfying 

P r o b ( ] Z -  T]/T>~ ~) <~ ~ (5.10) 

in a CPU time of order (N/e 2) log(l/a). That is, the total amount of work 
needed to get a "good" estimate of T is linear in N. 

(c) The disadvantage (for our application) of the preceding approach 
is its bias: though the bias can be made very small compared to the 
statistical error, it must be remembered that the Karp-Luby algorithm is to 
be used as a subroutine within the main Monte Carlo process, of which 
many iterations will be performed--and performing K iterations reduces 
the statistical error by a factor K 1/2 while the systematic error (bias) 
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remains unaffected. Thus, if K is large (as it will be in a high-precision 
study), the bias could overwhelm the statistical error. An alternative 
scheme, which produces a strictly unbiased estimator, is a "two-sample" (or 
"double sampling") procedure(75): one carries out an initial run using 
method (b), in order to get a rough estimate if" for T [and perhaps also a 
rough estimate l? for V = var(Z)]; and one uses this estimate to choose the 
number R for a second run, for example by R -  CMN/T or R =-CI;'/T 2. 
The key fact is that only the data from the second stage are used in com- 
puting the final estimator ZR; and since these data Z~ ..... ZR are indepen- 
dent of the random variable R, it follows that Z R is unbiased. Presumably 
it can be arranged so that only a small fraction of the CPU time is 
consumed (wasted) in the first stage. We intend to test this method if 
method (a) turns out not to be adequate. 

Thus, if the observable T(co (1), co(2)) is sufficiently "global" so that Tint, r 
is O(NP), then arguing as in Section 3.4, we see that the pivot algorithm 
combined with the Karp-Luby algorithm can produce one "effectively 
independent" estimate of CN, N/C2N in a CPU time of order N. 

5.4. N e w  A l g o r i t h m s  

The moral to be drawn from the pivot algorithm is that certain types 
of radically nonlocal moves can lead to extraordinarily efficient Monte 
Carlo algorithms, if the acceptance fraction for these moves is not too small 
(e.g., only a small inverse power of N) and the benefit from successful 
moves is sufficiently great. In particular, the relatively high acceptance frac- 
tion in the pivot algorithm is due to the fact that each of the tw~ segments 
of the walk to be pivoted is already known to be self-avoiding, and this fact 
is preserved in the pivot process; as a result, self-intersections after pivoting 
can come only from overlap between the two segments, and there is a 
reasonable probability ( ~ N  -p) that such overlap does not occur. 

This reasoning leads one to ask whether other Monte Carlo 
algorithms for the self-avoiding walk might be devised, based on similarly 
nonlocal moves. One candidate for improved algorithms is the problem of 
generating SAWs in the variable-N (grand canonical)f ixed-endpoint  
ensemble, as is needed for estimating efficiently the critical exponent c~i~e 
[see (2.3)]. The only currently available algorithm for this ensemble 
(BFACF) (12) has a rather long autocorrelation time. Numerical 
experiments (76) in d = 2  show that zint,A~ < N )  3~176 for the observables 
A = N, N 2, N 3. Moreover, it can be proven rigorously (77) that Zexp = +00 at 
all activities fl r 0. This latter result arises from the existence of very slow 
modes associated with transitions co --. co' that have A(co, co') >> 
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max([cob, Lco'l ), where A(co, co') is the minimum surface area spanned by the 
union of co and co'. This suggests, therefore, supplementing the BFACF 
algorithm with nonlocal moves which are specifically designed to speed 
up these slow modes. Caraccioloetal. (Ts) are currently studying one 
algorithm of this type, in which the BFACF moves are supplemented by 

J 
"cut-and-paste" moves, which cut the walk into two (or more) pieces, per- 
mute and/or invert the pieces, and then reassemble them. (The "inversion" 
of an N-step walk co is, by definition, the walk o5 defined by (5i= 
(-ON- CON--i" Note that this operation preserves the end-to-end distance vec- 
tor, i.e., f,o N - coo = 0 5 N - - 0 5 0 " )  A heuristic argument similar to that in Sec- 
tion 3.2 suggests that the acceptance fraction of such moves should behave 
roughly as ~ N  -r for some small, positive exponent r. On the other hand, 
moves of this kind should be extremely effective in speeding up precisely 
those transitions that are slow in the original BFACF algorithm. An 
optimal combination of BFACF and "cut-and-paste" moves might, 
therefore, yield an algorithm with a significantly smaller dynamic critical 
exponent than the original BFACF algorithm. Algorithmic improvements 
of this kind appear to be essential for high-precision Monte Carlo studies 
of the critical exponent ~sing in the SAW. (79) 

A P P E N D I X  A. SERIES A N A L Y S I S  OF THE A C C E P T A N C E  
FRACTION 

We computed the acceptance fractions f ( g , k , N ) ,  by direct 
enumeration, for SAWs on the square lattice ( d = 2 )  with N ~  17. The 
results are reported in Table VIII. The final columns of Table VIII list the 
integers a( g, k, N) - c N f (  g, k, N). Note that a( g, k, N) -- a( g, N - k ,  N), so 
it suffices to list the values for 1 <~ k <~ N/2. The preceding column lists the 
average of a(g, k, N) over k, namely 

1 N - - 1  
k~__ a(g, k, N) (A.1) 

a(g' N ) = - N - 1  =1 

Data for the various group elements g are reported in rows marked 90 ~ 
Rotations, 180 ~ Rotations, Axis reflections, and Diagonal reflections. The 
row marked Group average is an average over the seven nonidentity 
elements of the group. The row marked Heuristic is the heuristic estimate 
(3.2). We remark that these enumerations required roughly 70hr CPU 
time on a VAX-11/785 computer, using a rather inefficient program and an 
extremely inefficient FORTRAN compiler (the UNIX t"77 compiler). An 
earlier enumeration for N ~< 14 required slightly less than 2 hr CPU time. 
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We analyzed these series by the ratio method with Neville-Aitken 
extrapolants, having first performed an Euler transformation 

y = (1 + cQz/(1 + c~z) (A.2) 

to reduce the effect of even-odd oscillations. More information on these 
series-extrapolation methods can be found in Refs. 80 and 81. These com- 
putations were carried out using the program NEVBARB, graciously sup- 
plied by Tony Guttmann. Our goal in these analyses is to estimate the 
critical exponent p for the acceptance fraction, defined by f~, ,N -p as 
N ~ oo. Series extrapolation is, of course, a notoriously tricky and subjec- 
tive business. Our exponent estimates are 95 % subjective confidence inter- 
vals, but are based solely on the internal consistency of the data from the 
given series, not on their physical plausibility or compatibility with 
estimates based on other series or on Monte Carlo data. In order to be fair, 
we report the full Neville-Aitken tables and invite the reader to form his or 
her own estimates. 

In Tables IX-XIII we report the results of an analysis of the series 

1 N--1  
f(g, N) =- ~ f(g, k, N) (A.3) 

N - - l k =  1 

for the various group elements g. We show the first-, second-, and third- 
order Neville-Aitken extrapolants p~1), p~2), and p~3~ for the values ~ = 0.3, 
0.4 of the Euler-transform parameter. (For c~<0.3 the even-odd 
oscillations are rather severe, and stable estimates of p cannot be made.) 
The bottom entry in each column is the average of the last five entries 
(13~<N~< 17), and the error bar is twice the spread of these entries. We 
consider this bottom entry to be a crude but objective measure of the 
"final estimate" to be obtained from the given column of extrapolants alone 
(i.e., without making further extrapolations), and of its "internal stability." 
However, it should not be taken blindly as an estimate of p, particularly if 
the extrapolants are monotonic: in this case, the true value of p is most 
likely located beyond the last extrapolant (as a higher-order extrapolant 
would no doubt reveal), and the "error bar" is likely to be a gross 
underestimate. 

First we analyze the series for f(g, N) averaged over the seven group 
elements g; the results are shown in Table IX. For  c~ = 0.3 the second-order 
extrapolant is monotonic increasing, with weak even-odd oscillations; all 
we can say is that p > 0.172. The third-order extrapolant is roughly stable, 
but with strong even-odd oscillations; we can make only the very rough 
estimate p = 0.18 + 0.05. For c~ = 0.4 the even-odd oscillations are much 
weaker, but the convergence is slower (as expected); the second- and third- 
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Table IX. Neville-Aitken Table for Group-Averaged Acceptance Fraction ~ 

c~ =0.3 ~=0.4 

3 0.2308 0.2857 
4 0.1067 -0.0174 0.0990 -0.0876 
5 0.0675 -0.0110 -0.0077 0.0691 0.0092 0.0576 
6 0.0948 0.1767 0.3644 0.0880 0.1447 0.2803 
7 0.0922 0.0819 -0.0603 0.0906 0.1008 0.0348 
8 0.1039 0.1622 0.3228 0.0989 0.1408 0.2210 
9 0.1082 0.1343 0.0644 0.1047 0.1394 0.1360 

10 0.1146 0.1589 0.2329 0.1104 0.1503 0.1827 
11 0.1188 0.1524 0.1294 0.1151 0.1528 0.1615 
12 0.1231 0.1618 0.1992 0.1193 0.1573 0.1757 
13 0.1266 0.1619 0.1623 0.1231 0.1603 0.1733 
14 0.1299 0.1665 0.1896 0.1264 0.1634 0.1789 
15 0.1328 0.1680 0.1761 0.1295 0.1659 0.1797 
16 0.1355 0.1705 0.1861 0.1322 0.1682 0.1818 
17 0.1380 0.1721 0.1818 0.1347 0.1701 0.1827 

0.133 0.168 0.179 0.129 0.166 0.179 
_+0.023 +0.020 +0.055 -+0.023 _+0.020 _+0.019 

a Bottom entry in each column is average of the last five entries; error bar is twice the spread 
among these entries. 

order extrapolants yield p>0 .170  and p>0.183,  respectively. Overall, a 
fair estimate would probably be p = 0.18 _+ 0.04. 

Next we turn to the estimates for particular group elements g. For 90 ~ 
rotations, the Neville-Aitken extrapolants (Table X) behave qualitatively 
very much like those for the group average, but the numerical value of p is 
lower; we estimate p = 0.145 +_ 0.04. Likewise, for axis reflections 
(Table XI) and diagonal reflections (Table XII), we find a very similar 
qualitative behavior, and estimate p =0.175 +0.04 and p=0 .165  +0.045, 
respectively. All these group elements give roughly agreeing estimates for p, 
in the range ~0.15-0.18. For  180 ~ rotations (Table XIII), however, the 
estimates are radically different: though not well stabilized, the extrapolants 
suggest a much higher value for p, around 0.41. 

At first we did not know what to make of this estimate. Does each 
group element have a distinct critical exponent p? On theoretical grounds, 
one would expect not. Moreover, all the series except the 180 ~ rotations are 
at least consistent with having the same exponent p. But it is hard to 
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Table X. Neville-Aitken Table for Acceptance Fraction for 90 ~ Rotations a 

~=0.3 7=0.4  

n p~l) p~2) p~3) p~n p~2~ p~3) 

3 0.2308 0.2857 
4 0.0615 --0.1077 0.0571 -0.1714 
5 0.0390 -0.0061 0.0447 0.0399 0.0053 0.0936 
6 0.0642 0.1398 0.2856 0.0584 0.1139 0.2226 
7 0.0646 0.0660 --0.0446 0.0627 0.0800 0.0292 
8 0.0750 0.1269 0.2487 0.0707 0.1105 0.1715 
9 0.0792 0.1048 0.0495 0.0761 0.1089 0.1047 

10 0.0851 0.1259 0.1892 0.0814 0.1183 0.1466 
11 0.0890 0.1204 0.1013 0.0858 0.1206 0.1285 
12 0.0929 0.1283 0.1596 0.0896 0.1245 0.1401 
13 0.0961 0.1279 0.1266 0.0930 0.1268 0.1370 
14 0.0991 0.1317 0.1505 0.0960 0.1292 0.1414 
15 0.1017 0.1330 0.1397 0.0987 0.1312 0.1424 
16 0.1041 0.1353 0.1493 0.1012 0.1332 0.1448 
17 0.1062 0.1367 0.1460 0.1034 0.1349 0.1461 

0.101 0.133 0.142 0.098 0.131 0.142 
• • • • • • 

a Bottom entry in each column is average of the last five entries; error bar is twice the spread 
among these entries. 

Table Xl. Neville-Aitken Table for Acceptance Fraction for Axis Reflections ~ 

= 0.3 ~ = 0.4 

3 0.2308 0.2857 
4 0.1231 0.0154 0.1143 -0.0571 
5 0.0752 -0.0204 -0.0384 0.0776 0.0041 0.0347 
6 0.1071 0.2026 0.4257 0.0993 0.1645 0.3250 
7 0.1023 0.0833 -0.0957 0.1009 0.1075 0.0220 
8 0.1129 0.1656 0.3301 0.1082 0.1446 0.2189 
9 0.1162 0.1358 0.0615 0.1130 0.1418 0.1347 

10 0.1213 0.1575 0.2226 0.1177 0.1503 0.1759 
11 0.1245 0.1500 0.1235 0.1214 0.1512 0.1544 
12 0.1279 0.1580 0.1903 0.1247 0.1546 0.1678 
13 0.1305 0.1574 0.1545 0.1276 0.1565 0.1653 
14 0.1331 0.1613 0.1807 0.1302 0.1588 0.1705 
15 0.1354 0.1623 0,1680 0.1326 0.1608 0.1714 
16 0.1374 0.1645 0.1776 0.1347 0.1626 0.1734 
17 0.1393 0.1657 0.1737 0.1367 0.1641 0.1743 

0.135 0.162 0.171 0.132 0.161 0.171 
• • • • • • 

a Bottom entry in each column is average of the last five entries; error bar is twice the spread 
among these entries. 

822/50/' 1-2-12 
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Nevi l le -Ai tken Table for  Acceptance Fraction for  Diagonal  
Reflect ions a 

~=0.3 ~=0.4 

n p~l) p~2) p~3) p~nl) p(2) pIn3) 

3 0.2308 0.2857 
4 0.0615 -0.1077 0,0571 -0.1714 
5 0.0390 -0.0061 0.0447 0.0399 0.0053 0.0936 
6 0.0583 0.1163 0.2387 0.0537 0.0952 0.1852 
7 0.0582 0.0576 -0.0304 0.0567 0.0688 0.0292 
8 0.0700 0.1287 0.2710 0.0654 0.1087 0.1885 
9 0.0753 0.1074 0.0539 0.0718 0,1104 0.1145 

10 0.0823 0.1317 0.2047 0,0782 0.1225 0.1590 
11 0.0873 0.1273 0.1118 0.0835 0.1265 0,1404 
12 0.0924 0.1374 0.1780 0.0884 0.1322 0,1552 
13 0.0966 0.1389 0.1457 0.0928 0.1363 0.1546 
14 0.1006 0.1445 0.1721 0.0967 0.1405 0.1612 
15 0.1041 0.1469 0.1604 0.1004 0.1439 0.1630 
16 0.1074 0.1503 0.1706 0.1037 0,1470 0.1658 
17 0.1104 0.1525 0.1672 0.1068 0,1497 0.1673 

0.104 0.147 0.163 0.100 0.143 0.162 
• • • • • • 

Bottom entry in each column is average of the last five entries; error bar is twice the spread 
among these entries. 

Table Xlll. Nevi l le -Ai tken Table for  Acceptance Fraction for  180 ~ Rotat ions ~ 

= 0.3 7 = 0.4 

3 0.2308 0.2857 
4 0.2462 0.2615 0.2286 0.1714 
5 0.1724 0.0250 -0.0933 0.1749 0.0674 0.0154 
6 0.2158 0.3461 0.6672 0.2038 0.2907 0.5t40 
7 0.2119 0,1963 -0.0285 0.2084 0.2269 0.1311 
8 0.2338 0.3434 0.6378 0.2242 0.3030 0.4553 
9 0.2428 0.2966 0.1794 0.2357 0.3047 0.3090 

10 0.2556 0.3450 0.4902 0.2472 0.3275 0.3958 
11 0,2648 0.3383 0.3148 0.2571 0.3363 0.3673 
12 0,2741 0.3584 0.4390 0.2662 0.3482 0.3957 
13 0,2822 0.3627 0.3821 0.2745 0.3571 0.3970 
14 0.2898 0.3738 0.4293 0.2821 0.3658 0.4096 
15 0.2967 0.3789 0.4067 0.2891 0.3730 0.4124 
16 0.3030 0.3852 0.4234 0.2955 0.3792 0.4163 
17 0.3088 0.3895 0.4172 0.3014 0.3844 0.4t81 

0.296 0.378 0.412 0.289 0.372 0.411 
• • • • • • 

Bottom entry in each column is average of the last five entries; error bar is twice the spread 
among these entries. 
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reconcile p~0.15-0 .18 with p~0 .41 .  As explained in Section3.2, one 
would expect the acceptance fraction for 180 ~ rotations to be smaller than 
that for other group elements; but, by standard ideas about universality, 
one would normally expect this to affect the amplitude and not the critical 
exponent. See, however, Section 4.2 for Monte Carlo data that support 
these surprising estimates. 

We also performed an analysis of the series a(g, N) defined in (A.1); 
this analysis yields estimates of the critical exponent 7 -  P. We form 
"biased" approximants using the current best estimate ~34'82/ # =  
2.638155 +0.000004, and we use the believed exact value (33~ 7 = 4 3 / 3 2 =  
1.34375 to infer estimates for p. These estimates of p turn out to be con- 
sistent with those obtained by direct analysis of f(g, N); we get p ~  
0.15-0.19 for all group elements except 180 ~ rotations. However, the 
estimates based on a(g, N) are somewhat more stable than those based on 
f(g, N), a result we consider rather surprising, since one might expect the 
a(g, N) and the CN to contain irregularities which would partially cancel in 
forming the ratio f(g, N)=-a(g, N)/c N. We thus consider the apparent 
greater stability of the estimates from a(g, N) to be a fluke, which should 
not be taken too seriously. 

A P P E N D I X  B. B O U N D S  ON THE E IGENVALUES OF THE P IVOT 
A L G O R I T H M  FOR O R D I N A R Y  R A N D O M  W A L K  

In this appendix we prove lower and upper bounds on the next-to- 
leading eigenvalue 22 in the pivot algorithm for ordinary random walk in 
arbitrary dimension d. Recall that the case d =  2 was analyzed exactly in 
Section3.3, with the result 22=1-0(1/N) .  We show here that this 
behavior continues to hold in general dimension d. 

The lower bound 22(P)~> 1 - O ( 1 / N )  is a consequence of an easy 
variational (Rayleigh-Ritz) argument using the trial function as; see (3.7). 

On the other hand, let G be the group of symmetries of the lattice. Let 
v be a fixed vector which is the vector difference of two neighboring lattice 
points [e.g., in Z d we can take v =  (1, 0 ..... 0)]. Then, to any ordered 
N-tuple (gl, g2,..., gN) of elements of G, we can associate a lattice walk 
(/) = ((J)0,  (2)1 ' " "  CON) by 

COo = 0 (B. la) 

COi=coi_l+gLgzg3...giv for l<~i<,N (B.lb) 

Denote this walk CO by W(g~ ..... gN)" This map W from G u to the set 57~v of 
N-step walks is not one-to-one, but it is onto. {In fact, W is precisely 
[2 d- l ( d _  1)!IN-to-one. } 
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Let  m = W(g~,..., gu) be a given walk. Suppose we choose to pivot at 
~o k by the symmetry h e G. The resulting walk co' = (co~ ..... CO~v) satisfies 

~o~ = ~o~ for i ~< k (B.2a) 

o)~ - co k = h(co~- cok) for i > k (B.2b) 

On the other  hand, if we define g~, + 1 by 

gk+l  = (gl  g2"'" gk) -1 hgl g 2" ' ' g k gk +l  (B.3) 

then the walk e3= W(g~,..., gk, g'~+~, gk+2,"., gN) satisfies 

o3i = r i for i<~k (B.4a) 

~bi=cbi_l + h g l g 2 . " g k g k + ~ . . ' g i v  for i > k  (B.4b) 

Therefore,  @ - o 3 ~ _ l = h ( ~ o i - o ~ i _ ~ )  for all i>k ,  and so aS~-oSk= 
h(~oi--~ok) for all i>k .  It follows from (B.2) that  ~o'=r 

Thus, the r andom process of successive pivots induces a Markov  chain 
{Uo, U1 .... } with state space G N. The transition probabil i ty from 
(gl, . . ' ,  gk+l,..., gN) to (gl,..., gk+ l , ' " ,  gN) is ph/N, where h is defined by 
(B.3), i.e., 

h= (gl "" gk) g'k + l gk l+ l(gl "" gk ) -  I (B.5) 

and Ph is the probabil i ty of choosing to pivot by symmetry operat ion h. 
Therefore,  if the {pg }g E ~ satisfy 

p~ = p ~  ~ for all ~, fl E G (B.6) 

(this is usually the case in practice),  then the transit ion probabil i ty ph/N 
does not  depend on { g i } ~ k + l -  Thus, assuming (B.6), the transit ion 
probabil i ty matrix for this Markov  chain is of the form 

N 
P=~,~=, I | ' | 1 7 4  | (B.7) 

w h e r e / i s  the [GI x [G[ identity matr ix and /~  is a fixed ]G[ x [G] symmetric 
stochastic matrix 

1~= {p(g-- .  g')} = {pg,g t} 

It follows that  )L2(/3) = 1 - O(1/N) under  assumption (B.6). 
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The above Markov chain { Un} o n  G N is related to the pivot-algorithm 
chain {XN} on 57N by X, = W(U,,). It follows that 22(P)~<22(/~): 

22(P) = sup 
g ~ 0  

cov=(g(Xo), g(X1 )) 
var=(g(Xo)) 

cov~(g(W(Uo)), g(W(U,))) 
= sup 

g ~ o var,~(g(W(Uo))) 

cov~(f(Uo), f (U1))  
sup 

i ~ o var~(f(Uo)) 

= &(~) ( B . 8 )  

where ~ is the uniform measure on G N. 
In conclusion, we have proven [subject to the condition (B.6)] lower 

and upper bounds on 22(P) of the form 1 - O(1/N), and hence lower and 
upper bounds on %xp of order N. 

A P P E N D I X  C. S T A T I S T I C A L  M E T H O D S  

In this paper we have for the most part followed standard methods of 
statistical time-series analysis; for an excellent exposition, see the books of 
Priestley (ss) and Anderson. (84) In this appendix we summarize these 
methods briefly. 

Let {A,} be a real-valued stationary stochastic process with mean 

p--- ( A , )  (C.1) 

unnormalized autocorrelation function 

C(t) =- (AsAs+, )  _ # z  (C.2) 

normalized autocorrelation function 

p(t) - C(t)/C(O) (C.3) 

and integrated autocorrelation time 

tint = 2  , =  -o~ p(t) (C.4) 

Our goal is to estimate #, C(t), p(t), and tint based on a finite (but large) 
sample A1 ..... AN from this stochastic process. 
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The "natural" estimator of # is the sample mean 

n 

~ - ~  Z1A;  _ (c .5)  

This estimator is unbiased (i.e., ( 2 ) =  #) and has variance 

var(_A) = _1 ~ 1 - C(t) (C.6a) 
n t = - - ( n - -  1 )  

1 
- (2zi,t) C(0) for n ~> r (C.6b) 
n 

[-see (2.19) and what follows it for discussion]. Thus, even if we are 
interested only in the static quantity ~, it is necessary to estimate the 
dynamic quantity r~n~ in order to determine valid error bars for #. 

The "natural" estimator of C(t) is 

1 . itL 
C(t)= ~, ( A i - # ) ( A i + I , L - # )  (C.7) 

n - l t l  i=1 

if the mean # is known, and 

C(t) = - ~ (Ae-A)(A~+I t l -  A ) (C.8) 
n -  Itl ~=1 

if the mean # is unknown. We emphasize the conceptual distinction 
between the autocorrelation function C(t), which for each t is a number, 
and the estimator C(t) or C(t), which for each t is a random variable. As 
will become clear, this distinction is also of practical importance. C(t) is an 
unbiased estimator of C(t), and ~(t)  is almost unbiased (the bias is of 
order 1/n) (Ref. 84, p. 463). Their variances and covariances are (Ref. 84, 
pp. 464-471, or Ref. 83, pp. 324-328) 

var(C(t ) )=-I  ~ [C(m) 2 + C ( m + t )  C ( m - t )  
n m =  _ ~  

1 
[-C(m) C(m + u - t) + C(m + u) C(m - t) cov(d( t ) ,  d (u) )  = n m = 

+ ~ c ( t , m , m + u ) ] + o ( 1 )  (C.10) 
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It, u ~> 0], where K is the connected four-point autocorrelation function 

to(r, s, t) --= ((A i -- #)(Ai+ r --/~)(A,+ s - #)(Ai+ t - #) ) 

-- C(r) C ( t - s ) -  C(s) C ( t - r ) - C ( t )  C(s-r)  (C.11) 

To leading order in l/n, the behavior of C is identical to that of C. 
The "natural" estimator of p(t) is 

~(t) =- C(t)/d(O) (C.12) 

if the mean # is known, and 

- (c.13) 

if the mean/~ is unknown. The variances and covariances of fi(t) and ~(t) 
can be computed (for large n) from (C.10); we omit the detailed formulas. 

The "natural" estimator of ~int would seem to be 

? 1 n--1 
"~int ~-- 2 Z p(t) (C. 14) 

t= (n- 1) 

(or the analogous thing with ~), but this is wrong! The estimator defined in 
(C.14) has a variance that does not go to zero as the sample size n goes to 
infinity (Ref. 83, pp. 420-431); so it is clearly a very bad estimator of rim. 
Roughly speaking, this is because the sample autocorrelations ~(t) for 
It[ >> r contain much "noise" but little "signal"; and there are so many of 
them (order n) that the noise adds up to a total variance of order 1. (For a 
more detailed discussion, see Ref. 83, pp. 432-437.) The solution is to cut 
off the sum in (C.14) using a "window" 2(t) that is ~1 for Itl < z  but ~ 0  
for [tl >> r: 

l n--1 
~'int ~ --=--2 2 2(t) ~(t) (C.15) 

t= (n-- 1) 

This retains most of the "signal," but discards most of the "noise." In 
particular, we use the rectangular window 

2( t )=  {~ ifif It[>MltJ <~ M (C.16) 

where M is a suitably chosen cutoff. This cutoff introduces a bias 

bias(iint)= - 1  ~ p( t )+o(~)  (C.17) 
2 I,r>M 
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On the other hand, the variance of Tin t can be computed from (C.10); after 
some algebra, one obtains 

var(gin~) ~ 2(2M+ 1) Tznt (C.18) 
n 

where we have made the approximation r < M ~ n. The choice of M is thus 
a tradeoff between bias and variance: the bias can be made small by taking 
M large enough so that p(t) is negligible for It1 > M (e.g., M =  a few times r 
usually suffices), while the variance is kept small by taking M to be no 
larger than necessary, consistent with this constraint. We have found the 
following "automatic windowing" algorithm (76'85) to be convenient: choose 
M to be the smallest integer such that M>~ eqnt(M). If p(t) were roughly a 
pure exponential, then it would suffice to take c,,~4 (since e 4 < 2 % ) .  
However, in our case p(t) is expected to be very slowly decaying (see 
Section 3.3)--and this is in fact observed--so in this paper we have taken 
c = 10. We find that p(M) "~ 0.01-0.02, so we expect our estimates of Tint to 
be systematically low by a few percent. 

Thus, the standard deviations in Table II are given by (C.6b), with the 
estimated values "Cint and C(0) replacing the theoretical ones. Similarly, the 
standard deviations in Table IV are given by (C.18), with gint replacing Tin t 
on the right-hand side. The one exception to these rules is the column 
(S2N)/(~O~) in Table II. To determine the error bar for (S2N)/(OgZN), one 
needs to know not only the variances of the estimates ( S  2 )  and ( ~ 2 ) ,  
but also their covariance. This covariance could in principle be determined 
by analyzing ((co2), (S~),) as a bivariate time series, using the appropriate 
generalization of (C.5)-(C.18). However, we were lazy: we just set worst- 
case error bars on (S~)/(~02N) by using the triangle inequality. This 
amounts to assuming that the estimates ( S ~ )  and (o91) are perfectly 
anticorrelated, which is far from the t ruth-- in fact, they are strongly 
positively correlated. Thus, the stated error bars on ($2N)/(09~) are likely 
to be several times too large, and this is in fact borne out by our 
regressions (Sections 4.2 and 5.1). 
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N O T E  A D D E D  IN P R O O F  

Benhamou and Mahoux (86) have computed the universal ratio Y~ = 
lim,_~o(S2N)/(co~) to second order in e = 4 - d ,  using direct tenor- 
realization methods. They find 

where 

1 5 1-27z 1 4 l l o g ( l _ u  2) duq 
~2=9-~-~+3---~-~i37 og-~-6  fo 1 + ~ u  2 j 

=0.030628... 

(The first-order term was found earlier in Refs. 87-89.) Three 
extrapolations of this series are a pr ior i  equally plausible: the [2/0] Pad6 
approximant (i.e., naive substitution into the Taylor series), the [1/1 ] Pad6 
approximant, and the [0/2] Pad6 approximant. For e = 1, 2 these give 

[2/0] [ 1/1 ] [0/2] 
d = 3  0.1598 0.1662 0.1601 
d = 2  0.1428 0.1662 0.1457 

The [2/0] and [0/2] approximants agree fairly well with our Monte Carlo 
estimates, but in our opinion this agreement is purely coincidental: the 
large coefficient of the ~2 term (compared to the e term) indicates that 
second-order perturbation theory, however we may choose to extrapolate 
it, is grossly unreliable for e > 1/3. This unreliability is reflected in the [1/1 ] 
Pad6 approximant, which has a pole at e~0.34 and makes grossly 
incorrect predictions at e = 1, 2. The unfortunate conclusion is that this 
particular series is just too short/badly behaved to yield reliable infor- 
mation. 

We would like to thank Juan Freire and Marvin Bishop for pointing 
out Ref. 86 to us. 
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