Journal of Statistical Physics, Vol. 50, Nos. 1/2, 1988

The Pivot Algorithm: A Highly Efficient
Monte Carlo Method for the Self-Avoiding Walk

Neal Madras' and Alan D. Sokal?

Received June 19, 1987

The pivot algorithm is a dynamic Monte Carlo algorithm, first invented by Lal,
which generates self-avoiding walks (SAWs) in a canonical (fixed-N) ensemble
with free endpoints (here N is the number of steps in the walk). We find that the
pivot algorithm is extraordinarily efficient: one “effectively independent” sample
can be produced in a computer time of order N. This paper is a comprehensive
study of the pivot algorithm, including: a heuristic and numerical analysis of the
acceptance fraction and autocorrelation time; an exact analysis of the pivot
algorithm for ordinary random walk; a discussion of data structures and com-
putational complexity; a rigorous proof of ergodicity; and numerical results on
self-avoiding walks in two and three dimensions. Our estimates for critical
exponents are v=0.7496 + 0.0007 in d=2 and v=0.59240.003 in d=3 (95%
confidence limits), based on SAWs of lengths 200 < N < 10000 and 200 N <
3000, respectively.

KEY WORDS: Self-avoiding walk; polymer; Monte Carlo; pivot algorithm;
critical exponent.

1. INTRODUCTION

The self-avoiding walk (SAW) is a well-known lattice model of a polymer
molecule with excluded volume. "> Its equivalence to the N =0 limit of the
N-vector model*®’ has also made it an important test case in the theory of
critical phenomena.

Monte Carlo studies of the SAW go back to the early 1950s,"% and in
recent years several improved Monte Carlo algorithms for the SAW have
been devised.""’”!* In this paper we study yet another algorithm, which,
though not new, turns out to be extraordinarily efficient. This algorithm,
which we call the pivot algorithm, was invented in 1969 by Lal,"'*) used

! Department of Mathematics, University of Toronto, Toronto, Ontario, Canada MS5S 1A1.
2 Department of Physics, New York University, New York, New York 10003.

109

0022-4715/88/0100-0109806.00/0 < 1988 Plenum Publishing Corporation

110 Madras and Sokal

in the mid-1970s by Olaj and Pelinka,’> and reinvented in 1985 by
MacDonald ez al.!¢'") Continuum analogues of the pivot algorithm have
been used by Stellman and Gans'®'*) and Freire and Horta.®® Except for
these few references, however, the pivot algorithm seems to have rested in
oblivion. This is a shame, for, as we shall demonstrate, the pivot algorithm
appears to be the most efficient algorithm yet invented for estimating the
critical exponent v in the self-avoiding walk.

The pivot algorithm is a dynamic Monte Carlo algorithm, which
generates SAWs in a canonical ensemble (fixed number of steps N) with free
endpoints. The elementary move of the algorithm is as follows: A site on the
walk is chosen at random and used as a pivot point; a random symmetry
operation of the lattice (e.g., rotation or reflection) is applied to the part of
the walk subsequent to the pivot point, using the pivot point as the origin.
The resulting walk is accepted if it is self-avoiding; otherwise, it is rejected,
and the old walk is counted once again in the sample. It is not hard to
prove that this algorithm is ergodic (see Section 3.5) and satisfies detailed
balance for the standard equal-weight SAW probability distribution.

At first thought this seems to be a terrible algorithm: for N large,
nearly all the proposed moves will get rejected. In fact, this latter statement
is true, but the hasty conclusion drawn from it is radically false! The accep-
tance fraction f does indeed go to zero as N — oo, roughly like N77%;
numerically, we find that in two dimensions the exponent p is around 0.19.
But this means that roughly once every N” moves one gets an acceptance.
And the pivot moves are very radical: one might surmise that after very few
accepted moves (say, five or ten) the SAW will have reached an “essentially
new” configuration. One conjectures, therefore, that the autocorrelation
time 7 of the pivot algorithm behaves as ~ N”. Things are in fact somewhat
more subtle (see Sections 3.2 and 3.3), but roughly speaking (and modulo a
possible logarithm) this conjecture appears to be true. On the other hand,
a careful analysis of the computational complexity of the pivot algorithm
(Section 3.4) shows that one accepted move can be produced in a computer
time of order N. Combining these two facts, we conclude that one “effec-
tively independent” sample (at least as regards global observables) can be
produced in a computer time of order N (or perhaps Nlog N). This is a
factor ~N more efficient than the alternative algorithms due to Redner
and Reynolds'? and Berretti and Sokal."® Indeed, this order of efficiency
cannot be surpassed by any algorithm that computes each site on
successive SAWSs, for it takes a time of order N simply to write down an
N-step walk!®

3 A personal aside: One of the authors (A.D.S.) was familiar with the Lal paper as early as the
fall of 1982, but rejected the algorithm out of hand on the ground that the acceptance

Monte Carlo Algorithm for Self-Avoiding Walk 111

The plan of this paper is as follows: In Section 2 we give a brief review
of the self-avoiding walk (SAW) and dynamic Monte Carlo methods, and
set the notation. The heart of the paper is Section 3: in successive sub-
sections we define the pivot algorithm and some of its variants; give a
heuristic analysis of its acceptance fraction and autocorrelation time; carry
out an exact analysis of the pivot algorithm for the ordinary random walk;
discuss the data structures needed and analyze the computational com-
plexity; prove rigorously the ergodicity of the algorithm; and discuss
questions relating to initialization. In Section4 we present numerical
results using the pivot algorithm on two-dimensional SAW’s of lengths
200 < N < 10,000. (This latter length is probably a world record, if anyone
cares.) We also present preliminary results on three-dimensional SAWs of
lengths 200 < N < 3000. These simulations used a total of roughly 300 and
120 hr CPU time, respectively, on a Cyber 170-730 computer. Our
estimates for v are 0.7496 4+ 0.0007 in d=2, and 0.592+0.003 in d=3
(95% confidence limits). In Section 5 we discuss prospects for the future,
including a test of the hyperscaling relation dv =24, — 7 in dimension d=3
and a search for logarithmic violation of hyperscaling in dimension d = 4.
In Appendix A we present an exact-enumeration/series-extrapolation
analysis of the acceptance fraction. In Appendix B we prove some bounds
on the eigenvalues of the pivot algorithm for ordinary random walk. In
Appendix C we discuss our statistical methods.

2. BACKGROUND AND NOTATION

2.1. The Self-Avoiding Walk (SAW): A Review

In this section we review briefly the basic facts and conjectures about
the SAW that will be used in the remainder of the paper. Let ¥ be some
regular d-dimensional lattice. Then an N-step self-avoiding walk (SAW) w
on ¥ is a sequence of distinct points wg, ®,..., @, in £ such that each
point is a nearest neighbor of its predecessor. For simplicity, we restrict

fraction would be tiny for large N. In June 1984 A.D.S. met Freire in Madrid, and made the
same argument to him. In May 1985, the other author (N.M.) proposed the pivot algorithm
to A.D.S. in discussion after a lecture on Monte Carlo methods for the SAW. The response
of A.D.S. was “Oh, yes, I know that algorithm, it’s a terrible algorithm because....” N.M.
forced A.D.S. to take a second look, and within days we convinced ourselves heuristically
that the acceptance fraction would go to zero only as a very weak power law (see
Section 3.2). We then started work on this paper in earnest. A.D.S. wants to take this
opportunity to atone publicly for his sins, and in particular to apologize to Juan Freire for
having criticized his work unjustly.

822/50/1-2-8

112 Madras and Sokal

attention to the simple (hyper)cubic lattice Z¢; similar ideas would apply to
other regular lattices. We assume all walks to begin at the origin (w,=0)
unless stated otherwise.

Let %, [respectively, % (x)] be the set of N-step SAWs on Z“ starting
at the origin and ending anywhere [respectively, ending at x]; and let cy
[respectively, cy(x)] be the cardinality of %, [respectively, of F(x)].
Then it can be proven®??) that the limits

p= lim V= 1lim cy(x)'¥ (xfixed #0) (2.1)
N—->ow N—
N =xmod 2

exist and are equal. Here u is a positive constant called the connective con-
stant (or effective coordination number) of the lattice. Some slightly stronger
bounds on ¢, and ¢,(x) can also be proven.?* %) It is believed, but not yet
proven, that ¢ and cy(x) have the asymptotic behavior

ey~ pNTT! (2.2)
ep(x) ~ pN Nsine =2 (x fixed #0) (2.3)

as N - co. Here y and ag,, are critical exponents, which are believed to be
universal among lattices of a given dimension d.
Consider now the mean-square end-to-end distance

1
<w§>saz |x|2 en(x) (24)

and the mean-square radius of gyration

1
(Sir=—) Sio) (25)
CNa)eyN
where
1 N 1 N 2
2 — [) 2.6
1 N 1 N 2
_ 2 — . 2.6b
i L o <N+1,-=0“"> (26b)

Very little has been proven rigorously about these quantities, but they are
believed to have the asymptotic behavior

() ~N¥ (2.7)
(S%> ~N? (2.8)

Monte Carlo Algorithm for Self-Avoiding Walk 113

as N — oo, where v is another (universal) critical exponent. [Very recently,
Slade®® has proven that (2.7) holds with v=1/2 for SAWs in sufficiently
high dimension d.]

Finally, let ¢y, y, be the number of pairs (0", ®*) such that & is
an N,-step SAW starting at the origin, ®® is an N,-step SAW starting
anywhere, and »'¥ and ©'® have at least one point in common (ie.,
o 0®#£). (This quantity is closely related to the osmotic second
virial coefficient for polymer molecules.) Then it is believed that

CNl,NZNNN1+N2N%A4+y_2g(N1/N2) (2.9)

as N,, N, — oo, where 4, is yet another (universal) critical exponent and g
is a {universal) scaling function.

2.2. Dynamic Monte Carlo Methods: A Review

In this section we review briefly the principles of dynamic Monte
Carlo methods and define some quantities (autocorrelation times) which
will play an important role in the remainder of the paper.

Monte Carlo methods can be classified as static or dynamic. Static
methods are those that generate a sequence of statistically independent
samples from the desired probability distribution #. Dynamic methods are
those that generate a sequence of correlated samples from some stochastic
process (usually a Markov process) having the desired probability dis-
tribution 7 as its unique equilibrium distribution.

For simplicity let us assume that the state space S is finite; this is the
case in the applications studied in this paper. Consider a Markov chain
with state space S and transition probability matrix P= { p(i - j)} = { p,}
satisfying the following two conditions:

(A) For each pair i, je S, there exists an n>0 for which p{">0.
Here p{” is the n-step transition probability from i to j. [This
condition is called irreducibility (or ergodicity); it asserts that
each state can eventually be reached from each other state.]

{(B) For each je S,
Y mpy=m, (2.10)
ieS

(This condition asserts that = is a stationary distribution for the
Markov chain P= {p,}.)

In this case it can be shown®"? that n is the unmigue stationary dis-
tribution for the Markov chain P={p,}, and that the occupation-time

114 Madras and Sokal

distribution over long time intervals converges (with probability 1) to =,
irrespective of the initial state of the system. If, in addition, P is aperiodic
(this means that for each pair i, je S, pf.j”) > 0 for all sufficiently large n),
then the probability distribution at any single time in the far future also
converges to =, irrespective of the initial state, that is, lim,_, ., p{” ==, for
all 4.

Thus, simulation of the Markov chain P provides a legitimate Monte
Carlo method for estimating averages with respect to n. However, since the
successive states X,, X;,... of the Markov chain are in general highly
correlated, the variance of estimates produced in this way may be much
higher than in independent sampling. To make this precise, let
A={A(i)},cs be a real-valued function defined on the state space S (ie.,
a real-valued observable); and consider the stationary Markov chain
(ie., start the system in the stationary distribution 7=, or equivalently,
“thermalize” it for a very long time prior to observing the system).
Then {A4,} = {A4(X,)} is a stationary stochastic process with mean

pa= LA =}, mA() (211)

ie§
and unnormalized autocorrelation function®
Caa(t) =<4, 4,40 — 15

= Y, A@[mpf" —m;m;] A()) (2.12)

ijesS
The normalized autocorrelation function is then
p44(t) = C 14(1)/C,14(0) (2.13)

Typically p ,,(t) decays exponentially (~e~""") for large ¢; we define the
exponential autocorrelation time

t

e 2.14
Texp, 4 “,risogp —log Ip_44(1)] (!
and
Texp =Ssup Texp,A (215)
A

Thus, t.,, is the relaxation time of the slowest mode in the system. (If the
state space is infinite, 7., might be +oo. However, for an irreducible,
aperiodic Markov chain on a finite state space, 1.,, is always finite.)

“In the statistics literature, this is called the autocovariance function.

Monte Carlo Algorithm for Self-Avoiding Walk 115

An equivalent definition, which is useful for rigorous analysis, involves
considering the eigenvalues of the transition probability matrix P. By the
Perron-Frobenius theorem,®® P has a nondegenerate eigenvalue 1 with
right eigenvector equal to the constant function and left eigenvector equal
to x; if P is aperiodic, then this is the only eigenvalue on the unit circle;
and the remainder of the spectrum lies in the interior of the unit circle.” Let
R be the spectral radius of the remainder of P, ie.,

R=inf{rispec P< {A: |2 <r}u{l}} (2.16)

Then, it is not difficult to show that R=exp(—1/,,,). In particular, the
rate of convergence to equilibrium from an initial nonequilibrium dis-
tribution is controlled by R, and hence by 7.,,.

On the other hand, for a given observable 4 we define the integrated
autocorrelation time

pAA(l) (2.17)

mtA_

© 1
2; P 44(1) =§

”MB

Nl'—‘

(The factor of 1/2 is purely a matter of convention; it is inserted so that
Tinta X Texp,a I paa(t)xe "V with t> 1.) The integrated autocorrelation
time controls the statistical error in Monte Carlo measurements of (A4).
More precisely, the sample mean /

A=-Y 4, (2.18)

1

=S =
I

i

has variance

_ 1 Z
var(A):F Y Caulr—s)
r,s=1
1y (1—"' Cl() (2.19a)
—”r=~(n—1) n) .
1
z;(Zrim,A)CAA(O) for n»rt (2.19b)

Thus, the variance of 4 is a factor 27y, , larger than it would be if the {4,}
were statistically independent. Stated differently, the number of “effectively
independent samples” in a run of length # is roughly #/27,,, ,.

*1In fact, P is a contraction with respect to any of the /?(n) norms (1 < p < o). These norms
are defined by (A4, = (X;csm; [4(0)]#)7 for p<oo, and | A, =sup,.s|4(i)|. The I*(r)
norm is particularly useful, as it arises from an inner product (4, B)=Y,. s n, A(i)* B(i).

116 Madras and Sokal

In summary, the autocorrelation times ., and t;, 4 play different
roles in Monte Carlo simulations. 7., determines the number of iterations
g that should be discarded at the beginning of the run, before the system
has attained equilibrium; for example, ng;,. 2 201.,, is usually more than
adequate. On the other hand, 7, , determines the statistical errors in
Monte Carlo measurements of (4), once equilibrium has been attained.

Most commonly, 7, and 1, 4 are of the same order of magnitude, at
least for “reasonable” observables A. In this case, the problem of
initialization bias, i.e., the need to discard data at the beginning of a run, is
not a serious one: perhaps 207, data points at the beginning of the run
need to be discarded in order to avoid a severe systematic error, but the
total run length will have be on the order of 10007, , (or even longer) in
order to obtain reasonably small statistical errors; so only a negligible frac-
tion of the data is being discarded. However, some algorithms, such as the
one studied in this paper, have the property that 7., > 7, 4 for the obser-
vables A4 of interest. In such cases the problem of initialization bias is
potentially a serious one: the need to discard data at the beginning of the
run could seriously degrade the computational efficiency of the algorithm.
We return to this question in Section 3.6.

Finally, we note that one convenient way of satisfying condition (B) is
to satisfy the following stronger condition:

(B") For each pair i, je S, n,p;=7;p; (2.20)

[Summing (B’) over i, we recover (B).] (B') is called the detailed-balance
condition; a Markov chain satisfying (B’) is called reversible.® Condition
(B’) is equivalent to the self-adjointness of P as on operator on the space
I*(n) (see footnote 4, above). In this case, it follows from the spectral
theorem that the autocorrelation function C,,(¢) has a spectral represen-

tation
S|

Ca(t)= Y k)l (2.21)

k=2

where 1 =4,>4,24;2> --- 2 45> —1 are the eigenvalues of P, and the
spectral weights «¥) are nonnegative. Moreover, we have

R=exp(—1/te,) =max(|4,], |2,5]) (2.22)
and
int, 4 <1 I+ 12 <l L+ exp(_l/Texp) X Texp
21—, 21 —exp(—1/14,)

¢ For the physical significance of this term, see Kemeny and Snell (Ref. 27, Section 5.3) or
Tosifescu (Ref. 28, Section 4.5).

T (2.23)

Monte Carlo Algorithm for Self-Avoiding Walk 117

3. THE PIVOT ALGORITHM

3.1. Definition of the Algorithm

The pivot algorithm’ is a dynamic Monte Carlo algorithm, which
generates SAWs in a canonical ensemble (fixed number of steps N) with one
endpoint fixed at the origin (w,=0) and the other endpoint free. The state
space is thus %,, and the invariant probability measure is the standard
equal-weight SAW distribution (n,=1/cy for each we %;). The elemen-
tary move of the pivot algorithm is as follows: choose at random a pivot
point k along the walk (0 <k <N —1); choose at random an clement of the
symmetry group of the lattice (rotation or reflection or a combination
thereof); then apply the symmetry-group element to w; ..., @, using w,
as a pivot (i.e., as the temporary “origin”). The resulting walk is accepted if
it is self-avoiding; otherwise it is rejected and the walk w is counted once
more in the sample.

Different variants of the pivot algorithm are obtained by specifying dif-
ferent distributions when we “choose at random™:

1. The pivot point k can be chosen according to any preset family of
strictly positive probabilities pg, py,... Py_ . The strict positivity (p,>0
for all k) is necessary to ensure the ergodicity of the algorithm. In this
paper we consider primarily a uniform distribution (p, = 1/N for all k); but
see Section 5.2 for a discussion of situations in which other choices may
possibly be advantageous.

[In practice we need not use k=0 as a pivot point, since global
rotations or reflections of the walk can be incorporated implicitly in the
data analysis rather than explicitly in the simulation. Thus, the Markov
chain that we in fact simulate is not ergodic on the whole space %, but
only on a subset of &, consisting of walks whose first step is in a specified
direction. However, each walk produced in the simulation is considered
during the data analysis to be a “proxy” for itself and all walks equivalent to
it by global symmetries. Actually, this latter step occurs automatically, since
all the observables that we study (e.g., w3) are invariant under the sym-
metry group of the lattice. The simulations reported in this paper employ a
uniform distribution: p,=1/(N—1) for all 1<k<N-—-1.]

2. Let G be the group of orthogonal transformations (about the
origin) that leave invariant the lattice Z%. Then the symmetry operation
geG can be chosen according to any preset probability distribution

7 MacDonald ef al.\'¢!7) call this the “wiggle” algorithm. We feel, however, that the term
“pivot” more accurately describes the elementary move of the algorithm, and in particular
emphasizes its global {(nonlocal) nature.

118 Madras and Sokal

{ Pg}geq that satisfies p,= p, for all g, and has enough nonzero entries
to ensure ergodicity (see below). The condition p, = p,-: is easily seen to
be both necessary and sufficient to ensure detailed balance with respect to
the equai-weight distribution 7.

Consider, for example, the case d=2. Then G is the dihedral group
D,, which has eight elements:

e identity (1)
* 490° rotations (2)
+ 180° rotation (1)
» axis reflections (2)
+ diagonal reflections (2)
The condition p, = p,-1 reduces to p go: 100 = P g0°ror- It Will be proven in

Section 3.5 that a sufficient condition for ergodicity is the nonvanishing of
the probabilities p, for

either either
+90° rotations 180° rotation
and
or or
both diagonal reflections both axis reflections

In our simulations we have used the choice p,;=0, p,=1/7 for g+#id

For d =3, G is the octahedral group O,, which has 48 elements. This
group includes (among other things) rotations and reflections similar to
those in d=2, as well as 180° rotations about the face diagonal of a unit
cube and +120° rotations about the body diagonal of a unit cube.®" In
any case, a simple description of the symmetry group of Z¢, valid for all d,
goes as follows: An element ge G is a d x d orthogonal matrix with integer
entries; so it suffices to specify the columns of g, which are ge,, ge,,.., ge,,
where e, e,,..., e, are the unit vectors in Z¢ Hence, an element ge G can
be specified uniquely by giving a permutation = of {1,.., d} and numbers
Oy Og= *1, and setting

8e;=0;€, (3.1)

It follows that the cardinality of G is 2¢d!. Using this description of G, the
pivot algorithm can be programmed very easily in any dimension.

Some variants on the pivot algorithm are worth mentioning. For
example, the original algorithm of Lal""* uses a step of the walk (rather
than a site) as the pivot location, and reflects the part of the walk sub-
sequent to that step in a hyperplane containing the chosen step. For the

Monte Carlo Algorithm for Self-Avoiding Walk 119

two-dimensional hexagonal lattice (the case considered by Lal), we do not
know whether this algorithm is ergodic. However, for the simple
(hyper)cubic lattice (any d>2) or the triangular lattice, this algorithm is
clearly not ergodic, since a straight rod is “frozen.”

Another variant of the pivot algorithm on the square lattice is the
following: Pick a pivot point k at random. If the angle of the SAW at w, is
180°, then attempt a diagonal reflection (choose one of the two diagonal
reflections at random, with equal probability). On the other hand, if the
angle at w, is 90°, then attempt either the diagonal reflection that would
straighten this angle or else the axis reflection through the line determined
by w, and w,_, (again with equal probability). It is casy to check that
detailed balance holds. Ergodicity of this algorithm follows from the proof
of Theorem 1 in Section 3.5. This method yields a higher acceptance
fraction than the usual pivot algorithm, since it uses local information to
choose its pivots.

For simplicity we have described the pivot algorithm as acting always
on the part of the walk subsequent to the pivot point. However, the com-
putational work can be reduced (roughly by a factor of 2) by applying the
symmetry operation always to the shorter of the two segments of the walk,
whichever it may be. In this variant of the algorithm, the initial point of the
walk is no longer maintained fixed at the origin, so the foregoing descrip-
tion with state space % is inappropriate. Rather, the state space of the
algorithm should be considered to be the space of equivalence classes of N-
step SAWs modulo translation; the algorithm is then easily proven to be
equivalent to the standard pivot algorithm. In practice, it is necessary to
translate the walk back to the origin every once in a while in order to
avoid integer overflow in the walk coordinates.

3.2. Acceptance Fraction and Autocorrelation Time

In this section we present a refined version of the heuristic argument
sketched in the Introduction, which relates the autocorrelation time t of
the pivot algorithm to the acceptance fraction f. We then present a
heuristic argument that attempts to predict the critical exponent p for the
acceptance fraction (f~N77); and we compare this prediction to
numerical estimates of p from exact enumeration {Appendix A) and Monte
Carlo (Section 4.2). The predicted value of p turns out to be incorrect, but
“in the right ballpark.”

Suppose we know that the acceptance fraction f in the pivot algorithm
behaves as f~N"7 as N-—oo. How, then, should we expect the
autocorrelation time to behave? Note first that if the acceptance fraction is
/, then, on the average, once every 1/f attempted moves we will obtain a

120 Madras and Sokal

success. Note also that the pivot moves are very radical: after a few (say,
five or ten) successful pivots, the global conformation of the walk should
have reached an “essentially new” state. Thus, we expect that for obser-
vables A4 that measure the global properties of the walk—such as the
squared end-to-end distance w? or the squared radius of gyration S3—the
autocorrelation time 7y, 4, should be a few (perhaps five) times 1/f. On the
other hand, it is important to recognize that local observables—such as the
angle between the 17th and 18th steps of the walk-—may evolve a factor
of N more slowly than global observables. For example, the observable
mentioned in the preceding sentence changes only when w,, serves as a
successful pivot point; and this happens, on average, only once every N/f
attempted moves.® Thus, for local observables A4 we expect 7;,, 4 to be of
order N/f. By (2.23), t.,, must be of at least this order; and if we have not
overlooked any slow modes in the system, then 7., should be of exactly
this order. Finally, even the global observables are unlikely to be precisely
orthogonal [in /*(n)] to the slowest mode; so it is reasonable to expect
that 1,,, 4 be of order N/f for these observables, too. In other words, for
global observables 4 we expect the autocorrelation function p , ,(¢) to have
an extremely slowly decaying tail, which, however, contributes little to the
area under the curve. This behavior is illustrated by the exact solution of
the pivot dynamics for the case of ordinary random walk (Section 3.3).

The foregoing heuristic argument is, of course, far from a rigorous
proof. It is not in general possible to find upper bounds on the
autocorrelation time in terms of the acceptance fraction; the problem is
that the state space could contain “bottlenecks” through which passage is
unusually difficult. We have no reason to believe that such bottlenecks
occur in the pivot algorithm, but neither do we have any proof of their
nonexistence.

The heuristic argument is inaccurate in one additional respect. In Sec-
tion 3.3 we will compute an exact solution for the pivot dynamics in the
case of ordinary random walk (i.e., no self-avoidance constraint); the result
i8S f=1, Top="Texp 4~ N, but (for global observables 4) 7, ,~log N.
Thus, 1y, 4 is greater by a factor of log N than our naive argument would
indicate. A similar factor of log N could conceivably occur in the self-
avoiding case as well, so that we would have f ~N~7 but 7, ,~ N”log N.
However, the numerical evidence presented in Sections 4.2 and 4.3 appears
not to support this possibility.

Next we attempt to estimate heuristically the acceptance fraction f,
and in particular to predict (at least approximately) the critical exponent p

8 This important fact about the pivot algoﬁthm was noticed by Garcia de la Torre et al.
(Ref. 32, p. 149, second column).

Monte Carlo Algorithm for Self-Avoiding Walk i21

(f~N7). Let 1<k<N-—1and let geG. Then the acceptance fraction for
applications of symmetry operation g at pivot point k£ is some number
f(g, k, N): it is the fraction of walks w e %, for which all the transformed
points ;=w,+ glw;—w,), k+1<i<N, are disjoint from the points
W, W The acceptance fraction f is then the average of f(g, k, N} with
respect to the probabilities { p,},.c and pg,.... Py_,.

A crude heuristic argument for the acceptance fraction f(g, k, N) is
the following: Suppose that the segments wg,..., w, and ®y,.., @y of the
walk o behave as if they were typical k-step and (N —k)-step SAWs,
respectively, in random relative orientation. In that case, the acceptance
fraction would be precisely

gk, N)=cnfccy (3.2)

since this is the probability that the joining of a random k-step SAW and a
random (N —k)-step SAW results in an N-step SAW. Averaging over k
(with respect to any reasonable distribution) and using the asymptotic
behavior (2.2) of ¢,, we predict

f~N-G-D (3.3)

Hence, p=y— 1. (Recall that y—1 is believed to equal 11/32=10.34375 in
d=2,% ~0.162in d=3,%" and 0 in d=4.)

Of course, the supposition on which this argument is based is wrong,
for two reasons. First, the two segments of the walk w are not typical k-step
and (N —k)-step SAWs: the fact that they are known to occur on an N-
step SAW means that they are somewhat “longer and thinner” than typical
k-step and (N —k)-step SAWs, hence harder to intersect with. This
property is preserved by the symmetry operation g, so one might expect
that the acceptance fraction f(g, k, N) would be greater than the prediction
(3.2). On the other hand, the two segments are not in a random relative
orientation: the fact that they are the two segments of an N-step SAW
means that they are more likely to point in opposite directions (looking
outward from the pivot point k), since this helps them to avoid intersecting
each other. This nonrandom relative orientation certainly affects the accep-
tance fraction, since it is “remembered” by the transformed walk. Consider,
for example, the trivial case in which the group element g is the identity
element. Then the acceptance fraction is 1, much larger than predicted in
(3.2), due to a combination of the “longer-and-thinner” effect and the
“orientation” effect. (The acceptance fraction in this case is of course
irrelevant for determining the autocorrelation time, since proposed
“moves” with g=1id have the same effect whether they are “accepted” or
“rejected”: the system does not move at all.) On the other hand, if the

122 Madras and Sokal

group element g is a 180° rotation or a reflection (with certain axes), then
one might expect the “orientation” effect to reduce the acceptance fraction
below that predicted in (3.2): if the original orientation of the two segments
tends to be antiparallel (so as to avoid intersection), then the new (rotated
or reflected) orientation of the two segments may tend to be parallel (and
thus favor intersection). For 180° rotations or reflections with other axes,
or for 90° rotations, the situation is less clear.

In summary, the prediction (3.2) is a very crude estimate and is wrong
for at least two reasons, leading to errors of possibly opposite signs. Hence,
there is no reason whatsoever to believe that the critical exponent p is
exactly equal to y — 1 (except perhaps in dimension d >4, where we expect
p=7—1=0). On the other hand, this heuristic argument probably does
capture the main qualitative features of the problem, so it is reasonable to
expect that f does behave as ~N77 with p equal to a small, positive
number.

We have tested this heuristic argument in two ways:

1. We have performed an exact enumeration of SAWs in d=2 up to
N=17, and computed exactly the acceptance fractions f(g, k, N). These
data are reported in Appendix A, where we also perform a
“series-extrapolation” analysis. The results of this analysis are not
overwhelmingly stable, but they yield the following rough estimates:

90° rotations: p=0.145+0.04

axis reflections: p=0.175+0.04

diagonal reflections: p=0.165 1+ 0.04

180° rotations: p=0.41 (not well converged)
group average: p=0.18+0.04

(95 % subjective confidence limits). We find the radically different exponent
for 180° rotations extremely surprising: it is natural to expect the accep-
tance fraction for 180° rotations to be much lower than that for other
group elements, due to the “orientation” effect noted above; but, by stan-
dard ideas about universality, one would normally expect this to affect the
amplitude and not the critical exponent. Initially we suspected, therefore,
that the apparently larger exponent p for 180° rotations was a numerical
artifact, which would disappear at larger values of N.

2. Our Monte Carlo runs yield extremely precise estimates of the
acceptance fraction in d=2 for a variety of values of N in the range 200 <
N < 10000. The peculiar results of the series analysis led us to reanalyze our
Monte Carlo data so as to extract also (where possible) the acceptance

Monte Carlo Algorithm for Self-Avoiding Walk 123

fractions broken down by symmetry-group elements. These data, reported
in Section 4.2 (Tables II and I11), show that f~ N7 with

90° rotations: p=0.1637+0.0020
axis reflections: p=0.1967+0.0021
diagonal reflections: p=0.1953 +0.0021
180° rotations: p = 0.505 + 0.03 (somewhat subjective)
group average: p=0.1926 4+ 0.0008

(95% confidence limits). These data make it clear that the much larger
critical exponent for 180° rotations is nof a numerical artifact from small N,
but is a real effect. It would thus be reasonable to expect that all four group
elements (more precisely, conjugacy classes) might have distinct critical
exponents p; and there is some support for this in the data for 90°
rotations. If this is the case, then the exponent for the group average would
be the smallest of the four individual exponents; but it would be afflicted by
an unbelievably small correction-to-scaling exponent 4, (&0.03 according
to our estimates), which would make accurate estimation of the exponent
almost impossible (as our somewhat contradictory estimates show). In any
case, we still do not understand physically why the acceptance-fraction
exponent should be different for the group elements.

Our Monte Carlo data also provide somewhat less precise estimates
for the autocorrelation times 7, , of various global observables 4 (see
Table IV and Section 4.3). Straight power-law fits yield ;,, , ~ N7 with ¢~
0.205 £0.015. The data appear not to be consistent with the logarithmic
behavior 1;,, , ~ N7 log N if we insist that ¢ = p. Since the only theoretical
reason for considering multiplicative logarithmic corrections was based on
the idea that ¢ = p, and since furthermore g < p is highly implausible, we
conclude that such logarithmic corrections are probably not present in the
pivot algorithm for the d =2 self-avoiding walk.

In summary, we find that in d=2, f~ N7 with p~0.19. Clearly, p is
not equal to y — 1 =0.34375, but is in fact somewhat smaller. However, we
do confirm that 7, ,~ N7 for global observables 4, with g~ p. Our
preliminary results for d=3 show the same qualitative behavior: p~0.107
(for the group average) versus®? y—1=x0.162. Michael Fisher (private
communication) has posed the following very interesting problem: Express
the critical exponent(s) p in terms of other critical exponents for the SAW
(many of which have recently been computed in d=25>3%), This problem
is completely open.

124 Madras and Sokal

3.3. Exact Solution of Pivot Dynamics for Ordinary Random
Walk

In this section we solve exactly for some of the dynamical properties of
the pivot algorithm for the case of ordinary random walk (ie., for walks
without the self-avoidance constraint). First we compute the eigenvalues of
the transition matrix P (and thus t,); next we compute the
autocorrelation functions p 4 () (and thus ;.. ,) for selected observables A.

Consider, for starters, the case of ordinary random walk on a two-
dimensional regular lattice, which we take to be cither square (coordination
number g=4), triangular (¢=6), or hexagonal (¢=3). Then we can
represent an N-step walk @ by a sequence of integers (/;,..., [y) with 1 <
;< g: the integer /; codes the angle at w,_,, ie., the signed angle between
the (i—1)th and ith steps of the walk. (For i=1, /; codes the absolute
orientation of the first step of the walk.) The configuration space of N-step
walks is thus a product space S= {1,.., ¢}".

Let us consider, to begin with, pivot algorithms that use only
rotations, not reflections. We also assume (for simplicity only) that the
pivot point k is chosen from a uniform distribution over 0<kN—1.
Then the transition matrix P is of the form

1

N
5 L 1P @ RO (34)

i=1

P:

where [is the g x g identity matrix, and R is a fixed ¢ x ¢ symmetric
stochastic matrix (the details of R depend on the choice of the probabilities
{Pg}gec; the symmetry is a consequence of detailed balance). The eigen-
values of R are real; we denote them l=p,>pu,> --- 2 p,> —1. The
eigenvalues of P are thus all of the form

q
; =% 3 o, (3.52)

a=1

where n,,.., n, are nonnegative integers satisfying >.9_, n,= N (they are
the “occupation numbers” of the various eigenstates); the multiplicity of
this eigenvalue is

N!/ f[n,! (3.5b)

a=1

So the eigenvalues of P are rather uniformly distributed (with, however,
nonconstant multiplicity) between A;=u, =1 and A,v=p,. In particular,
the next-to-leading eigenvalue of P is A,=1—(1—p,)/N=1—-0O(N"").

Monte Carlo Algorithm for Self-Avoiding Walk 125

This means that the slowest mode in the system” has relaxation time t,, =
—(log A,) "'~ N.

For example, if the probabilities {p,} are chosen to be uniform over
the rotation subgroup of G, then we have R= (1/¢)E, where E is the gx ¢
matrix with all entries equal to 1. The eigenvalues of R are u,=1,
po=--- =pu,=0, and the next-to-leading eigenvalue of P is 4,=1—1/N.
To take another example, suppose that the probabilities {p,} are chosen to
be uniform over the nonidentity elements of the rotation subgroup of G.
Then we have

The eigenvalues of R are =1, u,= --- =u,= —1/(g—1), and the next-
to-leading eigenvalue of P is

q 1

aot-(gh)y
If reflections as well as rotations are allowed, then the transition
matrix becomes more complicated. A reflection acting at the ith coordinate
(i.e., at pivot point w,_,) changes not only /;,, but also /,.,,.., [y, since
these latter angles are reversed in sign (0 — —6). Call this sign-reversal
operation J; note that J is a permutation matrix. Then the transition
matrix for a reflection acting at the ith coordinate is of the form I® ' ®
R'®J®Y~ where R is a suitable g x ¢ matrix (which depends on the

relative probabilities assigned to the different reflections). Hence the full
transition matrix P is of the form

o & l—oc N o
:ﬁz ®171®R®[®N i ¥ Z I®171®Rr®J®1\/71 (36)

i=1

where « is a constant (0 <« < 1) which expresses the relative probability of
rotations and reflections. We do not know how to diagonalize this P in the
most general case. But if both R and R’ are linear combinations of E and [
(as in the two examples above), then all of the matrices involved here can
be simultaneously diagonalized, since J commutes with E. In a suitable
basis, we have E=diag(q,0,..,0) and J=diag(1,..,1, —1,.., —1). Then,
for any given R and R’, the eigenvalues of P can be computed as before.
Clearly we will again have 4,=1— O(1/N).

® We assume here that the algorithm is aperiodic, i.e., that U, > —1. This ensures that, for
large N, ;> [A] = |l

126 Madras and Sokal

We do not know how to extend the above exact analysis to dimen-
sions d> 3. However, in Appendix B we prove upper and lower bounds
showing that the result 1, =1~ O(1/N) continues to hold.

Now we turn to the calculation of the autocorrelation function p , ,(7)
for certain global observables 4. We consider the pivot algorithm on Z¢ for
arbitrary dimension d. For simplicity we consider only the case in which
the probabilities { p,} are uniformly distributed over the group G (including
the identity element), i.e, R=R'=(1/q)E and a=1/2 (but not all these
conditions are really necessary for our analysis to hold). We define a, to be
the vector corresponding to the ith step of the walk, ie, a,=w,—w,_;.
Then the cross-correlation function of a; and a; is

(a,(0)-a,t)) =9, x Prob(in ¢ trials no pivot point <iis chosen)
=9, x (1—iN)" (3.7)

(Note that a; couples to the slowest mode 4, =1— 1/N.) It follows that the
(unnormalized) autocorrelation function of wy=3>% a, is

i

N il
Conan)= C00(0) 050> = . (1= (8)

This is the spectral representation, guaranteed on general grounds by
(2.21); note that it has a uniform spectrum of contributions, ranging from
the slowest exponential (i =1) to the fastest (i = N). Thus,

T —1/log(1 —1/N) ~ as N- o

exp,wN

On the other hand, the integrated autocorrelation time for w, is

1 & N1
Tint LN =§ z cuN wN Zl <_—“ﬁ>

AN
=logN+<C—v12A)+O(N*‘) (3.9)

where C is Euler’s constant. Thus, 7, ,,~log N as N — co. Finally, we
note that the autocorrelation function p,,, .. (t) has two distinct scaling
behaviors as N — oo, depending on the regime of ¢

if || <N
Puy.oxt) Cin (3.10)

Monte Carlo Algorithm for Self-Avoiding Walk 127

(More precisely, the first expression is valid for N —» co with ¢/N — 0; the
second expression is valid for N — oo with [f[/N=¢>0.)

Next we look at the observable a, - a, (i < j), which is the cosine of the
angle between the ith and jth steps of the walk. The mean value {a;*a;) is
zero (by symmetry). The cross-correlation function of a;*a; with a, - a, is

{a;-a0)a,-a1))

=5 049, x Prob(in 7 trials no pivot point in the interval [, j) is chosen)
1 j—i\V
zﬁéi"éj’x<1_7) (3.11)

[Reason: Note first that the {a{0)}, .,y are independent random vectors
taking the values +e;, +e,,.., te, with probability 1/2d; it easily follows
that

1

a;-a(0)acaf0)>=—

00

for i < j, k <l Now consider the expectation of a, - a,(¢) conditioned on the
configuration at time 0 and also conditioned on the occurrence or not of a
pivot site in the interval [k, [) sometime during the time interval (0, ¢]. If
no such pivot occurred, then a,-a/¢)=a,-a,0). If such a pivot occurred,
then a,(z) and a,/r) have random relative orientations, so the conditional
mean of a,-aft) is zero.] It follows that the (unnormalized)
autocorrelation function of

N
wi= Y ara=N+2 3 aca
im 1€i<j<N
is
Cor or(1) = C02(0)- 02(1)) — Cad > =)
DN = (0y(0) - w3 (1)) — {0y _21<i<J<N N
AN N-1 m i+ 1
2y (-2 2
dm;(N) (3.12)

The slowest decaying contribution comes from m = 1; hence

Tewpt, = —1/log(1 — /Ny~ N

822/50/1-2-9

128 Madras and Sokal

as N — oo. Moreover,
Cu2,02(0)=2N(N—1)/d

so the normalized autocorrelation function is

2 N-—1 m el + 1
ow\,,wﬁ,(t)=mm:1<1—ﬁ> (3.13)

Hence, the integrated autocorrelation time for w? is

mta)N“ Z pr aJN

NN
T N-1,7, N/\ m

1 5

5 log
= —=]+0 3.14
2log N + <2C 2) + (N (3.14)

Thus,
Tingo?, ~ 108 N as N-o w

Finally, we note that the autocorrelation function p,: .2(¢) has two distinct
scaling behaviors as N — oo, depending on the regime of 1

2 :
TFe if |t|<N

PR (3.15)
ﬁ——_l—e_ltl/N if |t|~N

We can also use (3.11) to compute the autocorrelation function of S%,,
the squared radius of gyration. From (2.6) we find

. N(V+2) 2
Vi TN, L

1<i<jgN

(N+1—j)a;a, (3.16)

Inserting this into (3.11), we obtain

4 2 e ="
CS%”S%’(I)=d_(]—V—+—1)4 > BAN+1-)) (1_T>

I1gi<j<N
2

, I\
“1Sd(N+ 1) - Z I+ 11+ 2)1 +21+2)<) (3.17)

Monte Carlo Algorithm for Self-Avoiding Walk 123

A tedious calculation yields

4 (N—1)N(N+1)(N+2)2N*+2N+3)

3.18
Csil0)= d(N +1)* 360 (3.18)
and an even more tedious calculation yields
Tint SN Z pSN (t)
_ 6
 (N—1) N(N+1)(N+2)2N*+2N +3)
Nzt 2N
x Y I+ D) +2)(1%+2042) <—l— 1)
I=1 -
71 log
= — = 3.19
6logN+<6C 5)4—0(~ ()

Thus,
Tint,s3, ~ 108 N as N-o oo

Finally, we note that the autocorrelation function p st s3(7) has two distinct
scaling behaviors as N — oo, depending on the regime of «:

6 ,
m lf ll‘]<N
P~ 4w (3.20)
Nm if |tl~N

In summary, all three of the global observables 4 =, w%, S% have
Texpa~ N, but 7, ,~log N. On the other hand, local observables like
A=a,or a, a; (i, j fixed) have 1., 4~ Tiy 4~ N.

Finally, the foregoing formulas also shed some light on the relative
efficiency of (w?%)> and {S%) in making Monte Carlo estimates of v. On
the one hand, the relative variance of S? is (for large N) only 2/5 that of
w3:

var(S3) NY45d+O(N) 4 1

(3~ N6 o) a0 <_> (3.21)
var(@?) AN(N—U)/d 2 (1

SO "2+0<N> (3.22)

130 Madras and Sokal

This is because the radius of gyration is a somewhat more “global”
measure of the size of the walk than is the end-to-end distance. On the
other hand, 7, s, for the pivot algorithm is asymptotically three times as
large as 7;,,0,2:

Tinis}, 6log N+ (6C—71/5)+ O((log N)/N)

Tinte?, ~ 2log N+ (2C—5/2)+ O((log N)/N)

SR -
T 20(log N+ C—5/4) N

(Note, however, that even for N=10,000 this ratio is only =2.61.) It
follows from (2.19b) that the relative variance in estimates of {(S3) by the
pivot algorithm will be asymptotically 6/5 as large as the relative variance
in estimates of (w3). For the self-avoiding walk, these constants will of
course be changed, but we expect them to be “in the same ballpark”; and
this is indeed the case (see Tables I and IV in Section 4.2).

3.4. Data Structures and Computational Complexity

In this section we discuss the data structures needed in implementing
the pivot algorithm, and analyze the algorithm’s computational complexity.
We also make some practical remarks regarding implementation of the
computer program.

We store the coordinates of the current walk o = (wy,.., wy) using
two (redundant) data structures: a sequentially allocated linear list and a
hash table. The former is self-explanatory. A hash table can be defined
abstractly as a data structure with the following properties: Given a finite
(but typically enormous) set K of “possible keywords,” we wish to store a
subset H < K (of cardinality < some maximum M) in such a way that, for
any x € K, the following operations can be carried out rapidly:

1. Query. 1s xe H?
2. Insertion. Insert x into H (if it is not in H already).
3. Deletion. Delete x from H (if it is in H currently).

Specific implementations of the hash table will be discussed below, along
with the precise meaning of the word “rapidly.” Roughly speaking,
“rapidly” means “in a time of order 1, on the average.” In our application,
the set K of possible keywords will be the set of all points in some box
Bc 77 that is large enough to contain all possible points in the walk
(e.g., a cube of side =2N centered at the origin).

Our sequentially allocated linear list is a permanent data structure,
which contains at all times the current configuration of the walk w. Our

Monte Carlo Algorithm for Self-Avoiding Walk 131

hash table is, on the other hand, a scratch data structure, which is used
solely for self-avoidance checking; it is initialized to empty (H = (J) and is
reset to this condition after each use. We now describe in more detail how
the self-avoidance checking is performed.

Suppose that a pivot site w, (1 <A< N—1) and a symmetry transfor-
mation g have been (randomly) chosen. We then have to compute the
proposed new walk «’, defined by

, o, for 0<i<k
Wy + glw;, —) for k+1<i<N

; (3.24)
and test whether w;# w; for all 0<i<k<j<N. (If i, j are both <k or
both >k, then w;# w; is guaranteed, since the original walk w was self-
avoiding.) Note now that if there is an intersection, it is most likely to occur
for i and j both close to k (see below for details). So we check those
positions first. That is, we enter the points w;, , ®;_,, ©;.,, Wi_;,., In
that order, into the scratch hash table, checking for repetitions. If a self-
intersection is encountered, then the procedure is immediately terminated
and the proposed pivot move is unsuccessful. If, on the other hand, the
entire walk ' is entered into the hash table without encountering an inter-
section, then the proposed pivot move is successful. In either case, the hash
table is cleaned up before exit.

The computational complexity of this self-avoidance-checking
algorithm can be analyzed as follows: Define o[, j]1 to be the set
{Orax(:0)> Prmax(i0)+ 15 Omin(sny}- Then one application of the self-
avoidance-checking algorithm (including reinitialization) requires a time of
order I{w"), where

min{i: w'[k—i,k+i]isnota SAW}
Iw)= if 'isnotaSAW (3.25)
N if 'isaSAW

In particular, the amount of time required is at most O(XN). Now, if the
acceptance fraction is ~N~7, then we can expect a successful pivot once
every ~ N? attempts; so the amount of work required per successful pivot
is certainly at most O(N'*”). But in fact we can improve this bound to
O(N), by the following heuristic argument:

As remarked above, the amount of work per attempt is of order I{(w’).
Let us estimate crudely the expected value E{/(w")]:

Prob{l(w’)>i} =Prob{w'[k—i, k+i]isa SAW}
~ Prob{a 2i-step SAW pivoted at i is again a SAW }
~iTP (3.26)

132 Madras and Sokal

Therefore,

E[I(w)]=}, jProb{I=j}
=0

j=

~N'=? (3.27)

since p <1 (this is crucial). In particular, the conditional expected values
given that the attempt succeeds or fails are

E[I}success]=N (3.28)
E[I|failure] ~ N'~7 (3.29)

Thus, the expected amount of work required per successful pivot is of order

EfI|failure] - E[number of failures until a success occurs]

+ E[I]success]
|
= O(ZV1 —p) F + N
= O(N) (3.30)

Strong numerical evidence confirming this prediction will be presented in
Section 4.4 (see Table V).

Combining the above with the conjecture t,,, ~ N” from Section 3.2
(omitting possible logarithms), it follows that the pivot aldorithm requires
O(N) work per “effectively independent” observation of a global obser-
vable. To see how good this is, consider any other Monte Carlo algorithm
(dynamic or static) for generating SAWs. To get an “effectively indepen-
dent” data point for a global observable, it is necessary to change at least
eN sites of the walk, for some fixed &> 0. If each of these new sites is com-
puted separately, then this algorithm would require at least order N work
per “effectively independent” observation. Therefore, any algorithm that
would surpass the order-N bound cannot afford to compute (or even store)
most of the new sites on successive walks.'®

The easiest way to implement the “abstract hash table” is as a “bit

¢ One might imagine storing a walk as a sequence of bond rotations rather than as a
sequence of points (see Section 3.3 and Appendix B). In this formulation, a pivot move
changes only one element. But it is hard to see how to check self-avoidance after a proposed
pivot move without computing explicitly the walk coordinates.

Monte Carlo Algorithm for Self-Avoiding Walk 133

map,” i.e.,, a large array in which each keyword x € K (i.e., each point in the
box B} is assigned one bit: this bit is set to 1 if x e H, and 0 otherwise. Then
the operations of query, insertion, and deletion can obviously be performed
in a time of order 1. The chief drawback of this method is its extravagant
space requirements: the array requires at least (2N + 1)? bits. On most
machines this is unfeasible even in d=2 if N exceeds a few thousand, or in
d>=3 if N exceeds a few hundred.

An alternate implementation uses the method of hash-coding®”>®): An
array of M words is assigned, and each keyword xe K is assigned a
primary address h(x) in this array. Since in general M < |K]|, the “hash
function” h is necessarily many-to-one, ie., many distinct keywords may
share the same primary address, leading to the possibility of collisions. The
various hash-coding algorithms are distinguished by the method they use
to resolve collisions, i.e., to decide where to store a keyword if its primary
address happens to be occupied by some other keyword. One of the
simplest collision-resolution schemes, and the one we use, is Iinear
probing®7%). if the primary address h(x) is occupied, the algorithm
searches successively in addresses A(x)+ 1, A(x) + 2,... (modulo M) until it
finds either the keyword x or an empty slot.

In the worst possible case, a single query or insertion into a hash table
containing N entries could take a time of order N. However, it can be
shown®” that as long as the hash table does not get close to full (ie., N
does not get near M), then the average time (i.c., if the points are randomly
distributed) for a single query or insertion is of order 1. So the hash-coding
method is nearly as fast as the bit-map method, and far more space-
effective.

We remark that deletion from a linear-probing hash table is a delicate
affair: if done naively, entries can get “lost.”®”’ Fortunately, in our
application deletions occur only when cleaning up the table at the end;
therefore, all difficulties can be avoided either by performing these deletions
in a last-in-first-out manner, or by keeping a list of the locations in which
elements have been inserted and then deleting precisely these entries. (We
did the latter.)

In choosing the hash function A, we want the image set A[w’] to be
“sparse”: that is, if w; happens to be close to w;, then we want A(w;) to be
far from h(w). This is particularly important, since the occupied lattice
sites in a self-avoiding walk are close together. We used hash functions of
the form

h(x 1,0 Xg)=(a;x, + -+ +ayx,)mod M (3.31)

where a,,.., a;, M are chosen to be relatively prime and satisfy
a, ~ M+ (3.32)

134 Madras and Sokal

Thus, the a, are all of different magnitude, which helps ensure the desired
behavior of A [To understand this, think about why A(x,,.., x,)=
(x;+ -~ +x,)mod M is a bad hash function.] In particular, because we
are using linear probing, we want to avoid near-collisions as well as
collisions; this is why we insist on @, > 1 for all k.

To test how well 4 “hashed” its input, we repeated some runs with
different values of M between 2N and 10N, each time choosing a,..., @, as
specified above. The difference in overall running time was negligible—Iess
than 3%. We concluded that relatively little time was being wasted due to
h(w;) coinciding with A(w;) for w; # w;.

3.5. Proof of Ergodicity

In this section we prove the ergodicity of various versions of the pivot
algorithm. We have tried hard to convey the main ideas of the proofs
through pictures and informal descriptions preceding the formal arguments.

Theorem 1. The pivot algorithm is ergodic for self-avoiding walks
on Z? provided that all axis reflections, and either all 90° rotations or all
diagonal reflections, are given nonzero probability. In fact, any N-step
SAW can be transformed into a straight rod by some sequence of 2N —1 or
fewer such pivots.

Notation. Before we explain the ideas behind the proof, we need to
establish some notation. We consider SAWs o = (wg, @y, @y) in Z9
where , is not necessarily 0. Let X (w,) denote the jth coordinate of w,,
so that w, = (X (w,), Xp(w),--, X Aw,)). We define B(w) to be the smallest
rectangular box containing w, that is,

B(w) = {(x{,.., x,): m}(0) < x,<mj(w) for all j=1,.,d} (3.33)

where
m}(w)zmin{Xj(wk):kzo, 1,.,N} (3.34)

and
m}(w)=max{X(w): k=0, L,., N} (3.35)

are the minimum and maximum values, respectively, of the jth coordinate.
A “face” of B(w) is any set of the form {xe B(w): x;=mi(w)} for some
i=1,2 and some j=1,..., d. Let
M(w)=m}(w)—mj(w) (3.36)
and let
D(w)=M(w)+ --- + M {w) (3.37)

Monte Carlo Algorithm for Self-Avoiding Walk 135

Thus, M(w) is the extension of the walk w in the jth coordinate direction,
and D(w) is the /' diameter of B(w). Finally, let A(w) be the number of
straight internal angles of w:

Alw)=#{k:0<k<Nand o, =3w,_+w,, 1)} (3.38)

Proof of Theorem 1. Here is the plan of the proof: We will partition
the set of all N-step SAWs into two subsets:

(a) The set of those w for which some face of B(w) contains neither
of the endpoints w,, wy.

{b) The set of those w for which the endpoints w, and w, are in
opposite corners of B(w).

(Every N-step SAW lies in exactly one of these two subsets.) If @ is in sub-
set (a), we will show that there exists a pivot point w, and an axis reflection
whose result is a SAW o’ with D(w’) > D(w) and A(w')=A(w). If @ is in
subset (b) and is not a straight rod, we will show that there exists a pivot
point w, and a 90° rotation (or a diagonal reflection) whose result is a
SAW o' with A(w')= A(w)+ 1 and D(w’') = D(w). From this, we conclude
that for every N-step SAW o that is not a rod, there exists a SAW o' that
may be obtained from w by a single pivot, and satisfies A(w') + D(w’) >
A(w)+ D(w). Since 0< A< N—1 and 0 DN for every N-step SAW,
and 4+ D=2N~—1 if and only if the walk is a rod, it follows that any
N-step SAW can be transformed into a rod by a sequence of at most
2N —1 pivots.

Now for the proof. First suppose that w is a SAW in subset (a), ie.,
suppose that there exists a coordinate hyperplane x; = ¢ which determines a
face of B(w), such that neither w, nor wy lies in this hyperplane. Then we
will show that we can perform a successful pivot that is a reflection through
this hyperplane; the pivot point w, is chosen to be the first point of w that
lies in this hyperplane. (See Fig. 1.) The resulting SAW, «’, will be seen to
satisfy 4(w') = A(w), M{w')> M{(w), and M (w')= M /(o) for I+ j, hence
D(w')> D(w).

In detail: Suppose that there exist ie {1,2} and je {l,.,d} such
that neither w, nor wy lies in the face {xeB:x,=m}. Let r=
min{k: X{w,)=m}}. Now reflect ®,,,.., 0y through the hyperplane
x;=m,, yielding the walk o’ = (wj,..., wy) defined by

for k<1, W, =W, (3.39a)
for k>t Xfw,)=X{w,) for [#] (3.39b)
X(wp) =2m;— X (o) (3.39%)

136 Madras and Sokal

w’
S @
5
Wo !
|
|
! |
| |
| (0)
F__("),N
! !
Yo | |

Fig. 1. (a) Pivot at o, by reflecting through the dashed line. (b) The result. (We can now
reflect through the dashed-and-dotted line.)

It is not hard to see that ' is indeed a SAW. We have to check that for all
k>t, w is not in the set {wy,..., @, }. This is clear if X (w,) # m}, since then
) ¢ B(w); and if Xj(w,)=m], then o} =w,, so the result follows because
w was a SAW,

Also, A(w') = A(w), because right angles are preserved by axis reflec-
tions. [Note that X(w,_) # mj, but X(w,,) =m}, so both w and »’ have
right angles at w,.]

Next, we show that D(w')>D(w) First, it is clear that
M(w')= M/ w) for I # j. Now, let Q, ,(w) be the extension in the jth coor-
dinate direction of the subwalk (w,, @, , {,.., ®,), i€,

Q. (w)=max{X(w,): r<k<s}—min{X(o,): r<k<s} (3.40)

Then
M) =max(Q, (), Q.»®)) (3.41)

while
Miw") =0y (@) + Q, vw) (3.42)

Monte Carlo Algorithm for Self-Avoiding Walk 137

Both @, (w) and Q,y(w) are strictly positive [since X{w,)#m] and
X(wy)#m:], so M(w')> M w). This completes the proof in case ().

Next, suppose that w is a SAW that is in subset (b) and is not a rod.
Then A(w)< N—1 (ie, w contains at least one right angle), so we choose
our pivot point w, to be the last right angle of w. Since w, lies in a corner
of B(w), there must be a face of w that contains w,, w,, |,..., @, but does
not contain w,_,. (See Fig. 2a.) We now perform a 90° rotation (or
diagonal reflection) with pivot point w, so as to straighten out the angle
at w,. In the resulting walk o', points w,, ;, @, 5., 0, Will lic outside
B(w). The result will be an increase by 1 of A{w); D cannot decrease, since
one M, will increase by N — s, another will decrease by at most N — s, and
the rest will not change at all.

Formally, w is in subset (b) if for each je {1,.., d}, either X (w,)=
m}(w) and X (o y) = m}(w), or else X (w,) = m}(w) and X (wy) = m}(w). Let

s=max{k:0<k <N and w, #Hw,_, +we,)} (3.43)

f
\(A)N
|(')s (a)
\
|
|
|
|

Wo !
I
1
|)
1 U/N
i (b)
{
|

, !
Wy :

Fig. 2. (a) Rotate 90° at w,. (b) The result.

138 Madras and Sokal

Thus, (w,, ®,, (,-, ®y) lie on a straight line perpendicular to the line
segment joining w,_,; with w,. Let j* and j” be the (unique) coordinates
satisfying X, (w,) # X;(wy) and X,(o,_,)# X;(w,); note that j' #j". Now
perform a 90° rotation (or diagonal reflection) at w, to get a new SAW o’
with o} = w, for k<s, and (w,_,, w},..., @) all on one straight line.

It is clear that o' is a SAW, since @), , W}, 55, @y ¢ B(w). [In detail:
let i” =1 or 2 be such that

Xo(w,)=m.(0)

Then
Xp(os,)= m}(w) (="

ie, ,_, and w,, , lie on opposite sides of the hyperplane
X =mp(o)

Since (w?,..., @'y) lie on a straight line, the claim follows.] It also follows
from the above that

M ()= M (0)+(N—s)

Also, it is easy to see that M (w')>M;(w)—(N—s), and that
M/(w')= M) for all other je {1,.., d}. Therefore, D(w') > D(w). Finally,
the choice of pivot guarantees that A(w') = A(w) + L.

This completes the proof of Theorem 1. |I

We now consider other variants of the pivot algorithm, using different
subsets of the lattice symmetry group for the allowed pivots. First, it is
clear that either 90° rotations or diagonal reflections must be included for
the algorithm to be ergodic, for otherwise A(w) would never change; in
particular, straight rods could not be transformed into anything else.
However, 90° rotations alone are not enough (at least in Z?); in fact, there
exists a 223-step SAW in Z? that is not connected to any other SAW by
90° rotations; see Fig. 3. (We conjecture that diagonal reflections alone do
suffice for ergodicity.) Theorem 1 shows that we do not need 180° rotations
if we have axis reflections. The reverse case is the following theorem; for
simplicity, we consider only d=2.

Theorem 2 (d=2). The pivot algorithm is ergodic for self-
avoiding walks on Z2 provided that the 180° rotation, and either both 90°
rotations or both diagonal reflections, are given nonzero probability.

Proof. We use the notation and ideas of the previous theorem. It suf-
fices to show that any SAW w with A(w)< N —1 can be transformed into

Monte Carlo Algorithm for Self-Avoiding Walk 139

Fig. 3. A 223-step SAW in Z? that is not connected to any other SAW by 90° rotations.
(This SAW is not minimal.)

a SAW o” with A(w")=A(w)+1 by some finite sequence of allowed
pivots. Let w be an N-step SAW. Without loss of generality, assume that
X(wy_1)=X(wy), so that oy=cwy_, (0, 1). If mi(w)=m?}w), then @
is a rod (pointing in the 2-direction); so assume that m] <m?. Choose
i€ {1,2} so that X (w,)#m!.

Case 1. If X\(wy)=m’, then let w, be the last right angle in o, ie.,
s=max{k:0<k <N and w; # Ho,_,+ w0, 1)} (3.44)

Then a 90° rotation (or a diagonal reflection) at w, gives a new walk w” in
which (w},.., wy) lie on a straight line x, =const, and A(w")= A(w)+ 1.
(The situation is the same as that depicted in Fig. 2.)

Case 2. I X (wy)#m, let
z=min{x,: (mi, x;) € {0, ©y ey Oy} } (3.45)

and let ¢ be the unique index such that w,= (m!, z). It is not hard to see
that we can rotate 180° at , to get a new SAW & with X,(&y_,)=

140 Madras and Sokal

X (By), A(®)=A(w), and M (®)> M (w). [The inequality on M, is
proven exactly as (3.41)-(3.42) in case (a) of Theorem 1.] We now repeat
this procedure; after at most N 180° rotations we will be in case 1, and
hence able to increase 4 by 1. |

Remark. This proof, unlike that of Theorem 1, shows only that the
required number of pivots is at most of order N> We do not know if this
can be improved to be of order N.

3.6. Initialization

In this section we discuss questions related to the initialization of the
pivot algorithm.

When analyzing the data produced by a dynamic Monte Carlo
method, one assumes that the observations come from an (approximately)
stationary stochastic process whose single-time probability distribution is
the desired equilibrium distribution #. This can be accomplished in either
of two ways:

1. Equilibrium start. Choose the initial configuration X, from the
equilibrium distribution 7. Then the Markov chain X,, X,, X,,.. is
obviously a stationary stochastic process.

2. “Thermalization.” Start in an arbitrary initial configuration X,
and discard the first T observations, where 7T is large enough so that the
distribution of X is very close to the stationary distribution n. Here T may
be either (a) a fixed time, or (b) a stopping time.

We discuss each of these approaches in turn.

Equilibrium Start. In most applications in statistical mechanics and
quantum field theory, an equilibrium start is simply unfeasible: no efficient
algorithm for generating random samples from the equilibrium distribution
7 exists. However, the case of self-avoiding walks in the canonical (fixed-N)
ensemble is an exceptionally favorable one, because there do exist feasible
“static” Monte Carlo methods that choose an N-step SAW at random from
the uniform distribution =, These methods are, to be sure, very time-
consuming—in fact, it is an open question whether there exists such an
algorithm whose expected running time is bounded by a polynomial in N.
However, this is not necessarily a severe drawback to using the algorithm
for the purpose of initialization, since the algorithm need only be called
once.

The most obvious static methods are simple sampling and its variants:
generate an ordinary random walk (or nonreversal random walk, etc.); if it
intersects itself, start over; continue until you have an N-step SAW.

Monte Carlo Algorithm for Self-Avoiding Walk 141

However, the expected running time of these methods is exponential in N,
of order (g/u)" or [(g—1)/u]", respectively, where g is the coordination
number of the lattice and p<g—1 is the connective constant defined in
(2.1).

A much better static method is dimerization,**** which we now
explain briefly. We will then outline a heuristic argument which shows that
the expected CPU time for generating an N-step SAW is

~Nc1l0g2N+"2 Wlth Clz(y—l)/z

To generate an N-step SAW by the dimerization method, we generate
two (N/2)-step SAWs (“dimers”) and attempt to concatenate them. If the
result is self-avoiding, we keep it; otherwise, we discard both dimers and
try again. This algorithm is applied recursively: to generate one (N/2)-step
SAW, we generate two (N/4)-step SAWs and attempt to join them
(discarding both pieces if the result is not self-avoiding), etc. The recursion
can stop at level & if there is a quick way to generate random SAWs of
length Ny=2"*N (e.g, generating ten-step SAWs by simple sampling is
quite efficient, so we can generate an 80-step SAW using three levels of
recursion). It is easily proven that this algorithm generates SAWs from the
uniform distribution.

Let T, be the average amount of CPU time needed to generate
an N-step SAW by dimerization. Let p, be the probability that the
concatenation of two random (N/2)-step SAWSs yields an N-step SAW,;
assuming that

ey~ Ap VN1 (3.46)

[cf. (2.2)], we have
PNICN/(CN/Z)ZzB‘lNi(yVU (3.47)

where B= A4/47 . We will need to generate, on the average, 1/p, pairs of
(N/2)-step SAWs in order to get a single N-step SAW:

Ty~ BN'~'2T,, (3.48)

(We have neglected here the time needed for checking the intersections of
the two dimers; this time is linear in N, which, as will be seen shortly, is
negligible compared to the time 27,, for generating the two dimers.)
Iterating this & times, where k =log,(N/N,) is the number of levels, we
obtain

(2BNY ~H¥

Ty~ sG=—nwe=17

TN()

~quogzN+c2 (349)

142 Madras and Sokal

where

—1 +1 5-3
clzyT, c2=V—2—+long= 3 y+10ng

Now, T, grows faster than any polynomial in N, so the dimerization
method will be unfeasible when N is very large. Fortunately, the constants
¢, and ¢, are very small (in d=2 we have numerically ¢,~0.17 and"
c,20.72), so that even for N up to several hundred (resp. more than
10,000), NtlemN+e g Jess than about N? (resp. N°). Thus, even for
moderately large N, the large initial time investment needed to obtain exact
stationarity may be feasible.

“Thermalization.” The usual way of dealing with initialization bias in
dynamic Monte Carlo studies is to discard the first T observations, where
T is chosen large enough so that the distribution of X, is very close to the
stationary distribution n; for example, 7=107,, would usually be
sufficient [see the discussion surrounding (2.16)]. One then performs
statistical tests to ensure that the resulting data are indeed free of
initialization bias; and as an added precaution, one compares runs using
radically different initial configurations X,.

In our case we chose the initial SAW X, to be a straight rod.
Assuming 7., ~N/f ~N'*? we get 107,,,~ 150,000 for N=3000 and
107, ~ 600,000 for N=10,000 (see Table Il in Section 4.2 for numerical
data on the acceptance fraction f). These times are comparable to, but less
than, our typical total run lengths. (In fact, 7= 10r,,, may be too severe a
requirement when we are primarily interested in global observables; on the
other hand, T'= 107, , is certainly too optimistic, since a rod is very far
from equilibrium.)

For most of our runs we used the simple blanket rule 7= 200,000, and
carefully examined our data (for each N) to ensure that no trace of
initialization bias remained. This was done by dividing the output series of
10° observations into 20 (or 100) “batches” of consecutive observations and
looking at the means of the relevant observables within each batch. The
quantities w%, S%, and “f” are maximal for a rod, so the means of the first
few batches should be significantly higher than the rest; and the batches
corresponding to observations after time T should be statistically identical.
An “eyeball” examination of the data (Fig. 4 in Section 4.2) shows that all
visible traces of initialization bias in w3, S%, and “f™ have disappeared by

1 The estimate A ~1.178 for the square lattice is easily obtained from the counts ¢y in
Ref. 34, using a first-order Neville-Aitken extrapolation of the sequence cy/u N'~! with
u=2.638155 and y = 1.34375.

Monte Carlo Algorithm for Self-Avoiding Walk 143

time 150,000, even at N = 10,000. To make a more rigorous statistical test
of the hypothesis that all initialization bias had been removed by trun-
cation at 7, we used the “combined classical and area test”“* based on the
“standardized time series” of Schruben,***5) which compares functionals of
a transformed output series to those of a Brownian bridge. For each A, this
test showed that there was an initialization bias in the complete output
series, but not in the truncated series. (It should be noted, however, that
this test, like many others, may not perform well if correlations of very long
range (many times the batch width) are present. New statistical tests
without this flaw would be a valuable asset to practitioners of Monte
Carlo.) As a further check, we performed runs at N = 1000 and 2400 with
both “rod” and “dimerized” starting configurations; the results after
truncation agree to within statistical error.

Finally, we remark that T need not be a fixed time, but more generally
can be a stopping time (that is, a random time such that it can be decided
whether or not 7> n by looking only at the observations X, X,..., X,). In
fact, it can be shown***?) for quite general Markov chains that there exists
a stopping time T having the property that the distribution of X is exactly
the stationary distribution n. The use of such a stopping time would bring
the advantages of an “equilibrium start” (ie., strictly zero initialization
bias) without requiring a supplementary algorithm for generating samples
from the equilibrium distribution z. (Indeed, the Markov chain stopped at
time T serves itself as an algorithm for generating samples from n!) For
example, in the pivot algorithm for ordinary random walk, we can let T be
the first time such that every location k (0<k< N—1) has served as a
pivot point. [It follows from the solution of the coupon-collector’s
problem® that the expected value of T is Nlog N + O(N). Note, by the
way, that this is of slightly a larger order than 7, (by a logarithm). This
logarithm is apparently the price one must pay for achieving a strictly zero
initialization bias.] Unfortunately, we do not know of any nontrivial
statistical-mechanical problem (such as the pivot algorithm for self-avoiding
walks) in which a computationally feasible procedure for computing such a
stopping time can be found.

A Hybrid Scheme. After the completion of our numerical work, we
devised a “hybrid” initialization scheme that combines some of the features
of dimerization and thermalization, and may have advantages over both.
This scheme implements a sequence of pivot-algorithm runs at lengths
N;{<N,< ---. From the run at N, (after it has attained equilibrium), one
saves (e.g., on disk) a hundred or so statistically independent configurations
of N;-step SAWs; we return in a moment to the question of how to ensure
independence. Then, to generate the initial configuration for the run at

822/50/1-2-10

144 Madras and Sokal

N, ., one tries concatenating these N;-step SAWs with independently
generated (N, ;— N;)-step SAWs (e.g., generated by dimerization) and
continues until the first success. The result is a uniformly distributed
N, -step SAW, so the run at N, can start in equilibrium. (The runs at
N;and N, are, to be sure, very slightly correlated. But this only causes a
slight change in the error bar in the regression determining the critical
exponents; the estimates for the exponents themselves are still unbiased.)
The average number of concatenation attempts required is
CNCryor— NCn,- FOr AN=N,, , — N, fixed, this approaches A(4N)" "' as
N;,—» o (and is smaller for smaller values of N;). For example, for
AN =1000 and d=2, the average number of concatenation attempts is
~13. The advantage of this initialization procedure is that it permits an
equilibrium start at N, , with only minor computational overhead beyond
what would have been incurred anyway (the run at N,).

The batch of N;-step walks must be statistically independent if the
resulting N, ;-step walk is to be correctly distributed. To ensure the
approximate statistical independence of these walks, they should be
separated by a large time interval in the pivot-algorithm sequence, e.g.,
A4t 2 10t,,,,. Unfortunately, this requirement can be strictly fulfilled only if
one makes an extremely long run at N,, of length 210007,,,~ 1000N/f,
and this requires a computer time roughly of order 1000N2 The alternative
is to choose walks separated by a much smaller time 4¢ (» 7y, 4 for global
observables, but <z.,,), and hope that the nonindependence of these walks
does not cause too great a deviation from uniform distribution in the
resulting N, -step SAW. (The independence of this batch can be further
enhanced by choosing the walk to be concatenated randomly from among
the ones not yet chosen, rather than sequentially.} Of course, it would then
be prudent to “thermalize” the pivot-algorithm run at N, for some time
T before taking data. However, since the starting configuration should be
reasonably close to uniformly distributed, the needed thermalization time T
should be much less than that required for a rod start. In fact, we suspect
that in practice the initialization bias in the run at N,, ; would be undetec-
table.

The foregoing discussion shows that initialization can be a serious
problem in the pivot algorithm, since 7., > i, for the observables of
interest. Indeed, while 7, , for global observables 4 is only of order N (in
units of computer time), t.,, is of order N2 so the time 7T required for
“thermalization” is roughly 10N The time required for a “dimerized” start
is asymptotically even worse, of order NN+ < Thus, for very large N
the CPU time in the pivot algorithm will be dominated by initialization
(unless better initialization methods can be devised), and the advantages of
the pivot algorithm over competing algorithms will be nullified. (The

Monte Carlo Algorithm for Self-Avoiding Walk 145

algorithms of Redner and Reynolds'* and Berretti and Sokal!® produce
one “effectively independent” sample in a time of order N%) Fortunately,
these difficulties appear in practice only for N=10,000. Indeed, for
N 3000, dimerization is a feasible alternative, which guarantees the com-
plete absence of initialization bias. Moreover, the “hybrid” scheme, while
not resolving any of the questions of principle (a strict implementation
requires runs of length 2 1000N?), should provide in practice a quick way
of generating almost-equilibrium starts which require only a brief sub-
sequent thermalization.

In our work we used both methods of dealing with initialization bias:
dimerized starts for N <2400, and thermalization (with a rod start) for
N = 2400. (We do not claim that 2400 is any kind of “optimal” boundary.)
In future work we hope to test the “hybrid” scheme.

4. NUMERICAL RESULTS

4.1. Preliminary Tests

In order to test our pivot-algorithm program, we generated 107 SAWs
on the square lattice of lengths N =15, 20 and compared {w%) and {S%)
with the known exact values from direct enumeration.®*°"% We found

N=15: {wi>=47.2319+0.0560 (47.2177)
(82> = 6.7847 + 0.0049 (6.7843)

N=20: {wl>="72.1227+0.0940 (72.0765)
(82,5 =10.2477 4 0.0100

(95% confidence limits), where the known exact values are shown in
parentheses. The results agree perfectly to within statistical error (about
1+0.1%).

In order to test our dimerization program, we generated 10° SAWs on
the square lattice of length N =20. We found

(w2y> =T72.0755+ 00184 (72.0765)
(82,5 = 10.2452 +0.0070

(95 % confidence limits). Again, the results agree perfectly with the known
exact value and/or with the pivot-algorithm results to within statistical
error.

Our programs used a linear-congruential pseudo-random-number
generator

X, 1=ax,+b (modm) (4.1)

146 Madras and Sokal

with multiplier a = 31167285, increment b =1, and modulus m = 2*. This
generator is recommended by Knuth®® on the basis of its excellent score
on the spectral test.

4.2. Results for (w%), S% and Acceptance Fraction

We performed extensive Monte Carlo runs on SAWs in dimension
d=2 (square lattice), of lengths N ranging from 200 to 10,000. Table I
shows the runs we performed and the CPU time they took; all programs
were written in FORTRAN 77 and run on a Cyber 170-730 computer. The
total CPU time for these runs was roughly 300 hr. We used “dimerized”
starts for N<2400; for larger values of N, we used “rod” starts. (In
retrospect, we probably could have pushed the dimerized starts to

Table I. Summary of Pivot-Algorithm Runs on Square Lattice

CPU time in pivot algorithm

CPU time
Typeof Number of in dimerization Total Per iteration per N

N start iterations (sec) (sec) (usec)
200 Dimer 10¢ 2 4800 24.00
400 Dimer 10°® 5 8487 21.22
600 Dimer 10¢ S6 11475 19.13
800 Dimer 10°¢ 330 15022 18.78
1000 Dimer 10¢ 453 17018 17.02
1000 Dimer 8 x 10¢ 28 133570 16.70
1000 Rod 107 - 169577 16.96
1200 Dimer 10¢ 223 21084 17.57
1400 Dimer 10° 397 22728 16.23
1600 Dimer 10® 147 23679 14.80
2000 Dimer 10¢ 784 29833 14.92
2400 Dimer 10® 8835 33747 14.06
2400 Rod 10¢ — 33907 14.13
3000 Rod 10¢ — 41882 13.96
4000 Rod 108 — 52928 13.23
5000 Rod 10¢ e 65672 13.13
6000 Rod 106 — 74873 12.48
7000 Rod 10° — 86702 12.39
8000 Rod 983060 — 93894 12.19
8000 Rod 765595 — NA“ NA“
9000 Rod 10° — 108682 12.08
10000 Rod 106 — 121428 12.14

4 Datum unavailable because the authors misplaced it.

Monte Carlo Algorithm for Self-Avoiding Walk 147

somewhat higher values of N, since the CPU times for dimerization were
still negligible compared to the total run time.)

Table 1T shows the estimates for the mean-square end-to-end distance
(w3, the mean-square radius of gyration (8%, and the acceptance frac-
tion f obtained from these runs. Table III shows the acceptance fractions
broken down according to symmetry-group operations. Table IV shows the
estimates for the autocorrelation times 7, , for the observables 4 =w3,
S?, wy, and F; here F is the observable

Fe { 1 if the pivot at time ¢ is successful
t

= 42
0 if the pivot at time ¢ is not successful (42)

whose mean value is the acceptance fraction f. The standard deviations of
these estimates are shown in parentheses; a discussion of the statistical
procedures by which these error bars were determined can be found in
Appendix C.

We performed least-squares regressions on these data in order to
extract the critical exponents v and p and the dynamic critical exponent g,
along with the corresponding critical amplitudes. In this section we discuss
the static quantities <w?%), (S%>, and f. In Section 4.3 we discuss the
dynamic quantities 7;, 4.

Log-log graphs of {w?%>, (S%>, and f versus N are so straight that
there is nothing to be gained by reproducing them here. We fit (w?),
{S8%>, and f to the Ansatz ANP°¥", by performing weighted least-squares
regressions of their logarithms against log N, using the a priori error bars
on the raw data points (Table II) to determine both the weights and the
error bars.**) The results are

(oY v=0.7496 +0.0008

A=0.7764 + 0.0087

s2=1.41 (20d.f, level = 11 %)
(83> v =0.7495 £+ 0.0007

A =0.1090 + 0.0011

s2=140 (20df, level=11%)
f: p=0.1926 £ 0.0008

A=0.9572 +0.0052

52=142 (20d.1, level = 10%)

(95 % confidence intervals). Here s* is the weighted mean-square deviation
from the regression line; it should be distributed as 1/2 times a y* random

Madras and Sokal

148

“UONRZI[RULIOY) 10} PIPILOSIP SUOIEISN JO IOqUINU SI)BIIPHI PIBISK(,, "SISoYuaIed Ul UMOYS ST UOHBIAIP PIEPUEIS,

(Z¥000°0) L0£91°0 (SET000) PS6ETO (z6v) £8£801 (L86€) LILOLL 01 %T 401 poy 00001
(Zb000°0) L¥SOT0 (8€100°0) 1SO¥1'0 (S'STH) T'8S8T6 (1L£€) 09LES9 OIXT 501 pod 0006
(150000) #68910 (957000) £86£1°0 (1'90¥) TTSELL (657¢) LTOESS 0T XT S65S9L pod 0008
(£4000°0) TLE9TO (OPTOO0) €90P1°0 (L'89E) T'STLLL (v687) 8€97SS 01 XT 090£86 pod 0008
(£40000) #SPLTO (621000) LLOV10 (T'9LT) 6601+9 (s170) LOVSSY OIXT 60T poy 000L
(Pp000°0) TL6LTO (8T100°0) ¥OOVTO (I'SIT) T'8ELOS (85L1) t9vese s01%XT 601 poy 0009
(P5000°0) £.6870 (8T10000) 600FT0 (0°€91) +168LE (91€1) T1LYOLT 0T XT 901 pod 0008
(sp000°0) $E€610 (FTT00°0) 78610 (€TIN) HOVTLT (0z6) ST/ 01 xT 901 poy 000F
(9v0000) €60C0 (1TI00°0) LTOVIO (zTL) Osy8Ll ($85) ozzLTl 0l XT 501 pod 000€
(Lv0000) 61¥1T0 (0TI000) €1THT0 (L°0S) #e8LTl (L'60Y) +'18506 0T XT 601 poy 00vT
(1v0000) €1€120 (11100°0) 99010 (S’Ly) €v69T1 (g'€LE) v6vC06 0 o0T Iowi 00T
(¢p000'0) 911270 (80100°0) €€0¥10 (T9VE) L9SLI6 (8°¢87) 805689 0 001 Iy 0002
{£7000°0) 6LOSTO (FOT000) 060FT0 (9THT) 91689 (6'681) T1£68F 0 601 Jowi(y 0091
(¢7000°0) T8LET0 (1010000) LSOPTO (8€'61) ¥8T6YS (T¥ST) ¥66v0V 0 601 g oov1
(#4000°0) TTHPTO (86000°0) SPOPT0 (Z8%1) 90°00SY (L'81T) 0 1H0TE 0 501 Toung 0021
($1000°0) 10£57°0 (1£000°0) LIOFTO (z9°¢) 099Tve (6'87) 9'SviC 0T XS 01 poyd 0001
(91000°0) 962570 (¥£0000) €€0¥TO (p6€) ss0Tve (9'1€) ¥'SLEVT 0 501 X8 ug 0001
(s+0000) 95570 (S60000) ¥66€10 (T601) T0'8THE (¢'88) 6°S6¥HT 0 501 Towi(q 0001
{(sv000°0) LT#9T0 (S60000) £86E1°0 (v6°L) 96'7S¥T (679) L'9SSLT 0 40T L 008
(9¥000°0) ¥68LZ0 (£60000) 650110 (96%) 99'¢651 (¥'68) S'SEETT 0 401 Jour(y 009
(L¥000°0) 78000 (88000°0) 9¥OF1'0 (zsT) se€v98 ($°02) 6'€S19 0 601 Towi(q 00y
(6v000°0) L8SYE0 (LLO0O0) $EOFTO (8L°0) LO'80€E (s9) Ts61T 0 60T Toun (g 00T

s Ry /{5s NS> Koy pIEISIq suone1a| R N

,82133e7 eJenbg uo syjeAA BUIPIOAY-}[@g 10} 4 uoORI4 8dueldaddy pue «(Mm)[(¥s) oney |esianlun
#g) uonesAn jo snipey aienbg-ues *(¥m) asueysiq pul-oi-puj pue aienbg-uesapy 103 sejewnsy || ajqeL

149

‘SUNI INO JO SWOS A[UO 10J 3|qP{jBAR
318 BIBP 9S9Y) 1BY) 910N UOHEZI[EWISY] 10] PIPIEOSIP SUONRION JO JOQUINU SI}BOIPUT PILOSI(Y,, "SIsoYIUaIed Ul UMOYS SI UONRIASD PIBRPURIS ,

Monte Carlo Algorithm for Self-Avoiding Walk

(0v000°0) ¥€8100 (6L000°0) 90£L1°0 (T8000°0) 9S$810 (¥8000°0) ¥670T0 s01XT 60T poyd 00001
(1¥0000) 806100 (6L000°0) TOVLI'O (Z8000°0) LI681°0 ($8000°0) 119020 s01 X7 501 poy 0006
(15000°0) €91200 (S6000°0) 9T8LTO (860000) O¥T610 (101000) 0001TO 0T xT S65S9L poy 0008
(¢p000°0) €100 (18000°0) S06LT0 (£8000°0) 95€610 (980000) +801C0 01 %T 090£86 poy 0008
(¢v000°0) 9%1Z00 (18000°0) 867810 (¥80000) 1€0020 (980000) TLYITO 0T XT 601 poy 000L
($000°0) LOYZ00 (T80000) 10061°0 (580000) P¥90T0 {(L8000°0) 0LOTTO 0T XT 501 poyd 0009
(Lv0000) €09200 (£80000) vZ9610 (S8000°0) 88T1T0 (L8000°0) TTSTTO 0T xT 501 poy 000$
(0500070) LS6200 (S8000°0) 1SSOTO (£8000°0) 002220 (68000°0) LEVETO 0L XT 501 poy 000%
(¥S0000) 60P€00 (980000) 1€L1T0 (68000°0) ¢8%€T0 (06000°0) ¥rLvTO 01 x¢ 501 poy 000¢
(L500070) 888500 (88000°0) #88TT0 (060000) L¥syT0 (1600070} SLSSTO 01 x¢ 601 poy 002
(15000°0) £785000 (8L000°0) L0920 (08000°0) 69¥¥T0 (T8000°0) TO9STO 0 601 Touri(y 00T
(250000) 11100 (6L0000) T¥seT0 (18000°0) 6£4ST0O (T80000) ¥OFITO 0 501 Joundq 0002
(950000) STLYO0 (08000°0) THPPTO (£8000°0) TI99T0 (£8000°0) $9ELTO 0 501 JounQy 0091
(850000) 69600 (180000) €££25T0 (£80000) ¥LELTO (¥8000°0) ¥TI8TO 0 401 Jouwnqy 0ovi
(9%0000) 869500 (790000) $T69Z0 (£90000) 092620 (¥9000°0) TOS6TO s01xT s01 XT poy 0001
(¥+0000) 88,500 (650000) 0v69Z0 (090000) $60620 (19000°0) 90S6T0 0 001 X T o 0001
suone1oy 081 Suoro3[alI [eUOTRI(] SUOTIO[JOI SIXY suonel0y .06 plIeasi(q SuoITeId)] 1els N

LJuswalg dnoun-AnswwAg Aq umo(g uayoug

‘9213187 94enbg uo wYiobjy 10Al4 10} uonoeid 8oueldesdy 40} selewilsy

‘lit elqel

150 Madras and Sokal

variable with @2 =n— 2 degrees of freedom (d.f.), where n is the number of
data points. The observed value of s> thus provides a goodness-of-fit test
for the assumed statistical model: an abnormally large value of s* would
indicate either that the pure power-law Ansatz is incorrect (e.g., due to
corrections to scaling) or else that the claimed error bars on the raw data
are too small (further investigation would be necessary to determine which
of these is the true cause), while an abnormally small value of s> would
indicate that the claimed error bars on the raw data are too large. The
significance level is the probability that s* exceeds the observed value,
assuming that the model is correct. The foregoing data are thus in good
agreement with the pure power-law Ansatz and with the correctness of our
raw-data error bars (perhaps the latter are slightly too small). Combining
the data from {w?%)> and (5%, we obtain the estimate

v =0.7496 £+ 0.0007 (4.3)

Table IV. Estimates for Autocorrelation Times 71, 4 for Selected Global
Observables, for Pivot Algorithm on Square Lattice”

N Start Iterations Discard 2in0l, 200 8, 2Tintmy Wi r
200 Dimer 106 0 19.71 (0.39) 44.94 (1.35) 18.88 (0.37) 1.084 (0.005)
400 Dimer 10° 0 25.04 (0.56) 58.16 (1.98) 22.51 (0.48) 1.065 (0.005)
600 Dimer 10° 0 27.13 (0.63) 66.50 (2.43) 23.49 (0.51) 1.053 (0.005)
800 Dimer 10°® 0 2898 (0.70) 71.56 (2.71) 26.10 (0.60) 1.055 (0.005)
1000 Dimer 108 0 29.27 (0.71) 6896 (2.56) 26.51 (0.61) 1.049 (0.005)
1000 Dimer 8x10° 0 30.26 (0.26) 72.78 (0.98) 26.67 (0.22) 1.054 (0.002)
1000 Rod 107 5x10° 29.88 (0.24) 72.66 (0.90) 26.71 (0.20) 1.058 (0.002)
1200 Dimer 10¢ 0 30.78 (0.76) 74.50 (2.88) 28.15 (0.67) 1.056 (0.005)
1400 Dimer 10¢ 0 32.55 (0.83) 79.49 (3.17) 28.25 (0.67) 1.040 (0.005)
1600 Dimer 10° 0 33.67 (0.88) 8398 (3.44) 28.76 (0.69) 1.050 (0.005)
2000 Dimer 10¢ 0 38.00 (1.05) 87.16 (3.64) 31.93 (0.81) 1.054 (0.005)
2400 Dimer 108 0 38.11 (1.05) 94.73 (4.13) 31.12 (0.78) 1.029 (0.005)
2400 Rod 10¢ 2x10° 36.24 (1.09) 84.96 (3.92) 32.32 (0.92) 1.045 (0.006)
3000 Rod 106 2x10° 3833 (1.19) 9093 (4.34) 32.85 (0.94) 1.045 (0.006)
4000 Rod 104 2x10° 3978 (1.26) 93.54 (4.53) 34.73 (1.02) 1.028 (0.006)
5000 Rod 106 2x10° 4238 (1.38) 101.67 (5.13) 37.75 (1.16) 1.035 (0.006)
6000 Rod 10° 2x10° 4259 (1.39) 99.19 (4.94) 38.77 (1.21) 1.043 (0.006)
7000 Rod 10° 2x10° 4256 (1.39) 101.93 (5.15) 38.99 (1.22) 1.036 (0.006)
8000 Rod 983060 2x10° 4747 (1.66) 119.39 (6.59) 39.85 (1.27) 1.032 (0.006)
8000 Rod 765595 2x10° 44.64 (1.78) 107.74 (6.65) 40.73 (1.55) 1.034 (0.007)
9000 Rod 108 2x10° 47.54 (1.64) 116.76 (6.31) 43.04 (1.41) 1.029 (0.006)
10000 Rod 106 2x10% 4777 (1.65) 114.78 (6.15) 43.04 (1.41) 1.031 (0.006)

@ Standard deviation is shown in parentheses. “Discard” indicates number of iterations discarded
for thermalization.

Monte Carlo Algorithm for Self-Avoiding Walk 151

(The estimates of {w?%) and {S%) in each run are strongly correlated, so it
would be incorrect to combine the two estimates of v as if they were
independent.)

We also tried fits in which the data point(s) from the lowest value(s)
of N were discarded, as a check for the possible presence of corrections to
scaling. When the point at N =200 was discarded, s* decreased slightly (to
1.36, 1.29, and 1.24, respectively), while the exponent estimates shifted
slightly (to 0.7499, 0.7499, and 0.1921). While it is tempting to prefer these
new estimates for v, which are closer to the believed exact value®® v=3/4,
we see no valid statistical reason for doing so, in view of the negligible
change in the goodness of fit.

As a further test for corrections to scaling, we fit (w3 >, {S%>, and f
to the Ansatz ANP°Y(1 + C/N4), for a range of fixed values of A between
0.1 and 2. In all cases the estimated correction-to-scaling amplitude C is
less than 1.8 times its standard deviation, which is consistent with C=0.
For example, for 4 =1 we obtain

{wd>: v=0.7503 + 0.0013
A=0.7673 +0.0158
C=14842.17
=139 (19 df, level = 12%)

{8%> v=0.7503 + 0.0012
A=0.1076 + 0.0020

C=155+189
s2=1.33 (19 df, level = 16%)
£ p=0.1918 +0.0013
A=09511 % 0.0096
C=0.79+1.05

s?=1.37 (1941, level = 14%)

(95% confidence intervals). Thus, we find no statistically significant
evidence for corrections to scaling in {w?%>, {S%>, or f in the range
200 < N < 10000.

This is not to say, of course, that corrections to scaling are absent in
the two-dimensional self-avoiding walk; the point is simply that we are
working at such high values of N that any corrections to scaling (whether
analytic or nonanalytic) are unobservable compared to our statistical error

152 Madras and Sokal

(raw-data standard deviations of ~0.1-0.5%). Since our goal here is to
obtain accurate estimates for the leading exponents v and p, free from
systematic error due to corrections to scaling, the absence of significant
corrections to scaling is an asset rather than a liability. However, some
workers have sought to measure corrections to scaling, and even to
estimate the leading correction-to-scaling exponent A,, using either series-
extrapolation“*3¢" or Monte Carlo®'%*'" methods. It seems to us that
such attempts are likely to be inconclusive. As we have seen, at large N the
corrections to scaling are very small. On the other hand, some
workers®'5*17) have sought to determine the leading correction-to-scaling
exponent A4, by studying walks of intermediate length (e.g., 10 <N < 100),
for which the corrections to scaling would be larger than for very long
walks. In our opinion this procedure is not justified: it is true that reducing
N makes the leading correction-to-scaling term N~ 4! more prominent com-
pared to the dominant term, but it also makes the second correction-to-
scaling term N ~“? more prominent compared to the first one. Thus, this
procedure does not really estimate the exponent A, which, like other
critical exponents, is defined only via the limit N — oo, but rather some
effective exponent 4.4, which has no intrinsic physical meaning. We do not
feel qualified to pass judgment on the series-extrapolation methods, but we
suspect that at currently available series lengths (N <27) they are likely to
fall into a similar trap.

We also computed the amplitudes in the asymptotic relations
(w3 Y~ A,N* and {(S3%)>~ AsN*, with v forced to be equal to the
believed exact value®® 3/4. We found A4,=0.7719+0.0010 and A=
0.10830 +0.00012 (95% confidence intervals). These estimates are con-
sistent with those of Rapaport,®® but are a factor of 7-10 more precise.

The ratios Y= (53)/{w?%) are believed to converge as N— oo to a
constant Y which depends only on the dimension of the lattice. Our data
(Table IT) show a spectacular constancy of Y, over the range 200 <
N < 10000: each observed value lies in the narrow interval (0.1395, 0.1412)
and has a standard deviation of approximately 0.001. For a more rigorous
test, we performed a least-squares fit of Y, against B+ C/N; the result is
B =0.14028 + 0.00050, C=0.01+0.34 (95% confidence intervals) with
s2=0.13 (20 d.f, level >99.999%). This estimate of C is consistent with
zero: there is no detectable variation of Y, with N in the range 200 <
N < 10000. We therefore redid the fit assuming C=0; the result is Y =
B =0.14029 + 0.00033 (95% confidence interval) with s*=0.12 (21 d.f,
level >99.999 %). The extremely low values for s* indicate that the true
error bars on (5% >/{w3) are about a factor of three smaller than those
shown in Table II, as expected (see Appendix C); and the true error bar on
Y. is likewise about a factor of three smaller than that given above,

Monte Carlo Algorithm for Self-Avoiding Waik 153

namely Y, =0.14029 +0.00012. This estimate can be compared with
previous estimates:

Monte Carlo, square lattice, 20 < N < 600¢3): Y, =0.145+0.012
Monte Carlo, square lattice, 160 < N < 2400(6%); Y. =0.14035 4 0.00054
Monte Carlo, triangular lattice, 120 < N < 24003 Y, =0.14018 + 0.00028
extrapolation from N < 15, square lattice®2): Y, = 0.140 1+ 0.001
extrapolation from N < 10, triangular lattice 52 Y, = 0.140 4+ 0.001

(95% confidence intervals). Our values thus agree very closely with the
estimates of Rapaport®’ and Domb and Hioe,*? but are a factor of 2-8
more precise. (In three dimensions, however, our preliminary results are
less favorable to Domb and Hioe; see Section 5.1.) See also Note Added in
Proof.

Finally, we analyzed the acceptance fractions for individual symmetry-
group elements g. For 90° rotations, axis reflections, and diagonal
reflections, log-log graphs of f versus N show no observable curvature.
Least-squares fits to the pure power-law Ansatz f= AN 7 yield

90° rotations: p=0.1637 + 0.0020

A=0916 +0.015

§2=0.85 (14 df, level = 61%)
axis reflections: p=0.1967 £ 0.0021

A=1136+0.019

5=098 (14 df, level =47 %)
diagonal reflections: p=0.1953 +0.0022

A=1.038+0.018

s?2=1.21 (14 d.f, level =26 %)

(95 % confidence intervals). On the other hand, the data for 180° rotations
show significant curvature at the lowest value of N (1000). Fits to a pure
power law with and without the N = 1000 data points yield

all data points: p=0.4898 +0.0091
A=1710+0.119
s2=1.93 (14 df, level =2%)
N = 1000 discarded: p=0.5050 +0.0133
A=1943+0.208
s7=1.26 (12df, level =24 %)

omega(ny**2

!

0 20 40 60 80 100
Batch §
S(n)**2
(b) 400000 ——— (» I I
300000 -
200000~
o
(<]

O o
100000]- el SR S S R 2 5

0 20 40 60 80 100
Batch #

Acceptance Fraction
T T 1

@ 0, 0 Om®
® O 6989 éﬁa9uQ$o o qyi?fﬂ
1
0- QO 20 40 60 80 100

Batch §

Fig. 4. Batch means of (a) w?, (b) 52, and (c) f over batches of width 10,000, for pivot
algorithm on square lattice at N =10,000 with rod start.

Monte Carlo Algorithm for Self-Avoiding Walk 155

(95% confidence intervals). Truncation to N > 1400 thus appears to have
removed all observable corrections to scaling. Fits to the Ansatz
ANPo¥*(1 + C/N?) for a range of fixed values of 4 confirm this assessment:
if the N=1000 data points are discarded, the correction-to-scaling
amplitude C is in all cases less than half its standard deviation, hence con-
sistent with zero. (We find it strange that corrections to scaling should be
so much stronger at N = 1000 than at N = 1400, but that is what the data
seem to say.) All in all, for 180° rotations we estimate p = 0.505 4 0.03 (we
have increased the error bar because of the uncertainty regarding correc-
tions to scaling). This estimate is not very precise, but it does resoundingly
confirm the conclusion of the series analysis (Appendix A) that the accep-
tance-fraction exponents are different for different group elements g.

Table V. Data for (w%) and {(S2)°

N=200 Wall-Erpenbeck 3 (Wl > =2226 (47) {S8%,> =317 (3.8)

MacDonald et al.(!®
This work (Table IT)

{wge> = 2201 (19) —

(2> =21952 (6.5)

(8% > =308.07 (0.78)

N=400 Wall-Erpenbeck > {02y > =6037 (177) (820> =870 (14)

This work (Table) w2y, = 61539 (20.5) (S2,0> =864.35 (2.52)
N=600 Wall-Erpenbeck (k> =9732 (456) (520> = 1526 (37)

Mandel(66) (2> = 11470 (149) —

MacDonald er al. "9 {wky> = 11586 (169) —

This work (Table II) (w2y,>=113355 (394) (SZ%,> =1593.66 (4.96)
N=800 MacDonald et al.'® {oly>=17631 (292) -

This work (Table II) (w2, > =17556.7 (62.9) {Sp> =2454.96 (7.94)
N=1000 MacDonald er al.'8) (w2 > =25394 (492) —

This work (Table II) (@2y,> =244182 (20.7) {S2> =3424.07 (2.59)
N=1200 Rapaport®» (o> = 319231 (192) <S%,4,> =4503.13 (18.0)

This work (Table 1) (w2,4,> =320410 (1187) (S%,> =4500.06 (14.82)
N=2400 Rapaport®®) (D2,00> =909632 (546) (800> =12740.28 (51)

This work (Table II)

(@249> =90400.0 (275.9)

(S2od = 127359 (347)

@ Standard deviations are shown in parentheses. For Rapaport and Mandel, the standard
deviations are those stated by the authors. For Wall and Erpenbeck and MacDonald ez al.,
who give no error bars, the standard deviations were inferred based on our measured values
for <w%>, (wi>, (83>, {S%» together with the assumprion that all their samples were
independent. This assumption is probably close to correct in the case of MacDonald et /.,
since they used a pivot algorithm and took data once every ~60 iterations, which is
significantly greater than our measured values for 1;, 4 (see Table IV). However, in the
enrichment algorithm invented and used by Wall and Erpenbeck, it is very difficult to
estimate a priori the correlations within the batch of walks generated by a single start—so
the assumption of independence may well be overoptimistic. Indeed, Rapaport, who also
used the enrichment algorithm, found error bars about twice as large as those that would
have been obtained under the assumption of independence.

156 Madras and Sokal

As explained in Section 3.6, the initialization of the pivot algorithm is
a subtle matter: for the “rod” starts, it is essential to verify that the
“thermalization” interval (see the “Discard” column in Tables II-1V) is
sufficiently large; otherwise the raw data would be afflicted with a severe
systematic error. In Fig. 4 we plot the means of w3, S%, and F over batches
of width 10,000, as a function of time (batch number); this is for the run at
N = 10,000, which obviously poses the most severe test. All visible traces of
initialization bias have disappeared by time 150,000 at the latest. The
“combined classical and area test” of Goldsman‘*® confirms that there is
an initialization bias in the complete output series, but not in the truncated
series whenever the truncation interval is greater than 50,000.

Finally, for completeness, in Table V we compare our raw data
for <w%> and (S%) with the results of previous workers. Wall
and Erpenbeck®® and Rapaport®® used the enrichment algorithm, ¢%?)
Mandel®® used the slithering-snake (reptation) algorithm, (687066112 4n4
MacDonald et al.'® used the pivot algorithm. The estimates of Wall-
Erpenbeck, Mandel, and MacDonald er al. are consistent with ours (except
Wall and Erpenbeck’s {(w2,,>), but they have rather large error bars.
Rapaport’s estimates, on the other hand, agree very closely with ours, and
have error bars of the same order of magnitude. Since he and we used
radically different algorithms, this agreement is compelling evidence that
both his programs and ours are correct!

4.3. Results for Autocorrelation Times

We now turn to the estimates for autocorrelation times (Table 1V) and
attempt to estimate the dynamic critical exponent g (t;,, 4 ~ N¥).

Log-log plots of 7;, 4 versus N show no observable curvature, except
that for 4 = @3 and S% the N =200 point is anomalously low. We therefore
fit Tinnws Tinests A0 Tingg, tO the pure power-law Ansatz ANY, using the
methods explained above, trying fits both with and without the N =200
data point. Using all data points, we find

Tintwl’ ¢=10.218+0.010
A=332+025
$2=1.97 (20d.f,level =0.6%)

12Note that the slithering-snake algorithm is nonergodic.®7" Thus, the Monte Carlo
estimates for {w?) converge in the limit of infinite sample size to the mean value of w3 over
the ergodic class of a straight rod, which is presumably slightly larger than the average over
all SAWs. A priori it is difficult to estimate the magnitude of this systematic error. The close
agreement between Mandel’s estimate for (w2, > and our own indicates that the systematic
error in the slithering-snake algorithm at N =600 does not exceed about 1%.

Monte Carlo Algorithm for Self-Avoiding Walk 157

Tin,s3,: g=0.225+0.016
A=7.58+40.88
5s2=1.70 (20d.f, level =3 %)

T g =0.205+0.010
A=3234+023

$2=0.57 (20 d.L, level =93 %)

int,wy*"

(95% confidence intervals). When the point at N=200 is discarded
(leaving only N >400), the goodness-of-fit improves dramatically, and the
exponent estimates shift slightly downward:

Tintwl: q=0.206+0.012
A=364+0.32
s2=1.23 (19d.f, level =22%)
Tint,s3: g =0.206 £ 0.019
A=879+1.19
s2=0.84 (19d.1, level =66 %)
g=0203+0011
A=329+0.27
52=0.56 (19 d.f, level =93 %)

int,wy*

(95 % confidence intervals). Discarding more low-N data points makes no
further change in the fit. These latter values of ¢ are within error bars of
our estimate for p (=0.193), in accordance with our heuristic argument
(first half of Section 3.2) that g = p.

Fits to the form t,,, 4, ~ N1+ C/N“) for a range of fixed values of 4
confirm the absence of significant corrections to scaling for N > 400: in all
cases the correction-to-scaling amplitude C is less than 1.2 times its
standard deviation, hence consistent with zero.

The behavior of the pivot algorithm for ordinary random walk (Sec-
tion 3.3) suggests the possibility that 7, , might behave as ~N”log N,
where p is the acceptance-fraction exponent. To test this possibility, we fit
Tinia to the form ~ N7(log N)? for a variety of fixed exponents D between
0 and 2. Decent fits can be obtained for all these values of D, with the

158 Madras and Sokal

leading exponent ¢ varying from =020 at D=0 to ~0.08 at D=1 to
~ —0.05 at D=2 (this latter estimate is of course absurd). However, it
seems implausible on theoretical grounds that ¢ should be smaller than the
acceptance-fraction exponent p; and indeed the only theoretical basis for
considering a logarithm at all was the idea that ¢= p with D=1. This
latter exponent combination is strongly ruled out; and if we insist that
gz p=0.19, then D cannot be larger than about 0.2-0.3. The numerical
evidence for the d=2 self-avoiding walk thus seems consistent with a pure
power-law behavior 7, 4~ N? with ¢g=p, and inconsistent with the
proposed logarithmic behavior.

Remark. Our windowing procedure (see Appendix C) introduces a
small downward bias in the estimates of 7;,, , (probably a few percent). We
think that the relative bias is roughly constant as a function of N. However,
it is at least conceivable that the windowing algorithm introduces an N-
dependent bias, which could obliterate the evidence for a logarithm if it
existed. Although we do not believe that this occurred, we do want to raise
the possibility. Increased confidence on this point would require a very

Table VI. Statistics on Computational Complexity of Self-Avoidance
Checking, for Pivot Algorithm on Square Lattice?

Total work per successful pivot

Type of Number of

N start iterations E(work | failure) Failures Success Total
1000 Dimer 8 x 108 55.3 1636 + 1000 = 1163.6
1000 Rod 107 55.0 1627 + 1000 = 1162.7
1400 Dimer 10° 70.3 2254 + 1400 = 16254
1600 Dimer 10¢ 78.6 2619 + 1600 = 18619
2000 Dimer 108 91.0 3204 + 2000 = 23204
2400 Dimer 108 104.6 3863 + 2400 = 27863
2400 Rod 10° 105.4 3855 + 2400 = 27855
3000 Rod 10° 123.0 4753 + 3000 = 34753
4000 Rod 10¢ 153.6 6364 + 4000 = 46364
5000 Rod 10° 181.7 7940 + 5000 = 57940
6000 Rod 10°® 208.7 9433 + 6000 = 69433
7000 Rod 10¢ 234.9 10949 + 7000 = 8094.9
9000 Rod 10° 285.5 14175 + 9000 = 104175
10000 Rod 10° 309.9 1568.7 + 10000 = 11568.7

“ Data refer to entire run, including “thermalization.” (Note that these data are available for
only some of our runs.) “Work” is the number of insertions into the hash table. Column 4 is
the mean work per failed pivot. Column 5 is the mean work spent on failed pivots between
two consecutive successful pivots.

Monte Carlo Algorithm for Self-Avoiding Walk 159

high-precision Monte Carlo study, together with a rather sophisticated
statistical analysis.

4.4. Results for Computational Complexity

We now return to the predictions made in Section 3.4 regarding the
amount of work required by the pivot algorithm. The main prediction,
from (3.30), is that the average amount of work spent in self-avoidance
checking of failed moves per successful pivor should be linear in N. To test
this prediction, we fit a power law AN? to the fifth column of Table VI
(using weights proportional to the length of the run); the result was B=
0.982 +0.004, 4 =0.185 4 0.005 (95 % confidence intervals). [Since the raw
data in Table VI lack a priori error bars, these confidence intervals were
computed from the residual in the least-squares fit, using the Student #-test.
Thus, the residual cannot be used as a test of the goodness of fit, as it was
in the preceding cases.] This is strong support for at least the approximate
linearity of the work per success as a function of N. The observed dis-
crepancy of the exponent B from 1-—more than four times the alleged error
bar—should probably not be taken too seriously: it presumably reflects
corrections to scaling not taken into account in the assumed power-law
form. The value of 4 indicates that only about 15% of the work is
“wasted” on failed pivots.

We also fit a power law to the “E(work | failure)” column of Table VI,
obtaining an exponent 0.745 + 0.005. The predicted value, from (3.29), is
1 — p~0.807. We do not know whether this discrepancy is significant.

Finally, we fit a power law to the “CPU time per iteration per N”
column of Table I, obtaining an exponent —0.173+0.017. The predicted
value, from (3.27), is — p~ —0.193, in good agreement.

We remark that the data considered in this section come from the
entire run, including the “thermalization” interval. Thus, they may not
precisely measure the behavior of the pivot algorithm in equilibrium.

5. PROSPECTS FOR THE FUTURE

5.1. Three and Four Dimensions

The extension of this study to SAWs in higher dimensions is almost
trivial. In any dimension, the O(N) work per “effectively independent”
sample should continue to hold, with a constant at worst proportional to
the dimension. Runs in dimension d =3 (simple cubic lattice) are now in
progress; preliminary data from these runs (with 200 < N <3000) are

822/50/1-2-11

160 Madras and Sokal

shown in Table VIL'* A least-squares regression to these preliminary data
yields the estimates

(wld: v=0.5907 +0.0014
(83> v=0.5939 +0.0020
£ p=0.1069 + 0.0009

(95% confidence intervals). These estimates for v are in excellent
agreement with the latest series-extrapolation estimate®* v =0.592 + 0.002
and with Rapaport’s‘®) Monte Carlo estimate v =0.592 + 0.004 (95% con-
fidence interval). Steliman and Gans'®) obtained a roughly similar estimate
for p (~0.08) in their study of the pivot algorithm for continuum polymer
chains (of lengths 19 < N<297) in d=3.

As noted previously, the ratios Yy = (5% >/{w?%) are believed to con-
verge as N — oo to a constant Y, which depends only on the dimension of
the lattice. We performed a least-squares fit of Y, against 4 + B/N; the
result is 4 =0.1603 + 0.0017, B= —0.41 +0.53 (95% confidence intervals)
with 5% =0.18 (7 d.f,, level = 99 %). This extremely low value for s indicates
that the true error bars on {S%)/{w3 > are about a factor of two smaller
than those shown in Table VII, as expected (see Appendix C); and the true
error bar on Y is likewise about a factor of two smaller than that given
above, namely Y, =0.1603 + 0.0008. This estimate can be compared with
previous estimates:

Monte Carlo, tetrahedral lattice, 40 < N < 6003 Y, =0.157+0.004
Monte Carlo, simple cubic lattice, 120 < N < 24001; Y, =0.1597 + 0.0006
Monte Carlo, body-centered-cubic lattice, 120 < N < 2400%1): Y, =0.1594 + 0.0003
extrapolation from N < 10, simple cubic lattice*?: Y, =0.155 4+ 0.001
extrapolation from N < 8, body-centered-cubic lattice®2: Y, =0.155+0.001
extrapolation from N < 7, face-centered cubic lattice*?: Y, =0.15540.001

Our estimate of Y, agrees well with Rapaport’s‘®") value, but is a factor of
2-3 less precise. However, these estimates disagree significantly with the
Domb-Hioe®? values. Their extrapolation predicts that Y, decreases as N

13 The error bars in Table VII should not be taken too seriously, as we have not yet had time
to do a full time-series analysis as described in Appendix C. All error bars except those for
the acceptance fraction are based on Schruben’s®® “combined classical sum-interval
estimator.” Error bars for the acceptance fraction are based on the formula for independent
random variables, standard deviation = [f(1 — f)/n]'? (here # is the sample size), since we
expect the time series {F,} to be essentially uncorrelated (Table II).

161

‘Teuoisiroxd se papiedal aq pnoys ng ‘sesoyiusied Ul UMOYS ST UOHRIASP PIBpUEIS ,

(550000) ZpOTH0 (T6TO0°0) LETITO (87€) €©6LET (£€9) 8vpLvI 0 s01 X8 Touri(y 000¢
(550000} Legzbo (S61000) 9%091°0 (zen) 616! (9°¢9) 9'LL611 0 01%8 s 00sT
($5000°0) z68cy'0 (80E000) TEI910 (6'17) T8yl (zov) €9026 0 0T%8 Jouri(y 0007
(95000°0) 65€s¥0 ($9100°0) 60091°0 (18°9) LLyol (90¢) 9tps9 0 0T X8 IoWI(] 00ST
(95000°0) 8609v'0 (Z€T00'0) +€09T1°0 (66'8) £6L¥3 (6v°07) 1¥'8828 0 s01 %8 pung 0SZ1
(950000) L11L'0 (T6100°0) 120910 (v8') 1¥°5¥9 (L1°81) €v'szor 0 0T %8 Iowiqg 0001
(95000°0) L798v'0 (€¥100°0) ¥9651°0 (LTT) 6L6sY (09°'T1) 69°LL8T 0 s0I %8 Jewi(y 0sL
(95000°0) £9805°0 (501000) TS8ST0 (€8°0) 90'¥8T (099) 06'16L1 0 c0TX8 Jouwrcy 00¢
(550000) 8L1950 (#8000°0) 6£8S1°0 (92°0) 8966 (86°1) 90't09 0 01 X8 Toung 007

s Ko /KNs) NS> QL) pIeasIq SUONBISY] 1elg N

Monte Carlo Algorithm for Self-Avoiding Walk

,83131e7 31gn) 9jdwig uo SHyjepp BuipioAy-}19S 10} 7 uonodesy soueidesay pue (Ym)/(¥s) oney |esienun
Ng) uonesAn jo snipey sienbg-ueapy ‘(Ym) eoueisiqg pu3j-ol-pu3z sienbg-uesy 10} selRWIIST C|IA BlgR]

162 Madras and Sokal

increases (see Fig.2 of Ref 52), which contradicts our observations
(Table VII) and those of Rapaport.®” Clearly, extrapolation from such
small values of N can be very misleading. See also Note Added in Proof.

We remark that dimerization works better in d=3 than in d=2 (due
to the smaller value of y—1), so we can go to higher N with an exact
equilibrium start.

The pivot algorithm can also be used in dimension d=4 to look for
logarithmic corrections to scaling as predicted by renormalization-group
theory.”’? In particular, we hope to test the predicted logarithmic violation
of hyperscaling (see Section 5.3), which is equivalent to the triviality of the
corresponding (O-component!) ¢* quantum field theory.®*

5.2. Estimation of pand y

The most natural way to estimate the connective constant u and the
critical exponent y is to use an algorithm working in a grand canonical
(variable-N) ensemble (e.g, Redner and Reynolds) or Berretti and
Sokal'®). The canonical (fixed-N) ensemble, in which the pivot algorithm
works, is natural for estimating v, but rather unnatural for estimating u
and 7. [The point is that v is defined in terms of expectation values in
the canonical ensemble, while p and y involve the partition function
(normalization factor) for this ensemble, which is not directly observable.]
There do exist, however, at least two possible schemes for estimating y and
y from the pivot-algorithm data, as we now proceed to explain.

For any N-step SAW o, let 4,(w) be the number of extensions of w to
an (N + k)-step SAW:

Aw)=#{w' e won' €Sy, i} (5.1)

where the open dot denotes concatenation.'® The expected value of 4 (w),
averaging over w e %, is ¢y i/cy. Its asymptotic behavior as N — oo at

fixed k 1s
CN+k k k(y—1) <1>
— —_ — 5.2
s U |:1+ ¥ +o ¥ (5.2)

One approach, therefore, is to take data on the observable 4, for some
fixed, small value of k (e.g, k=4) as part of the pivot-algorithm
simulation: just maintain a list of all k-step SAWSs, and for each @ count
how many of these k-step SAWSs can be successfully appended to w. This

14 That is, if @ = {wg,.., @x) and @' = (W),..., W) With we=wy=0, then weo ' = (w¢,.., Wy,
Oy + O ey Oy + W)

Monte Carlo Algorithm for Self-Avoiding Walk 163

yields an unbiased estimate of (A4, =cy, ,/cy. By doing this at several
values of N and carrying out a least-squares regression to the Ansatz (5.2),
one can in principle estimate u and y. Unfortunately, the estimates
obtained in this way are likely to be mediocre for x and even worse for .
This can be ascertained quantitatively by working out the theory of the
least-squares regression and computing the variance of the estimators fi
and 7; we hope to do this in the near future.

An alternative approach is to run two independent pivot algorithms in
parallel, at the same value of N, and attempt to concatenate the walks
produced. The estimator here is the random variable

1 if oWenPeHy

B(w®,)= :
(o =0 i oVon®P¢ s,

(5.3)

whose mean is p,y=c,y/c} and whose variance is p,y(1— p,y). The
asymptotic behavior of p,5 as N — o is

N = Confch 27T IATINTOTD {54)
b 2N €N

where the amplitude A is defined by (3.46). Thus, by measuring {B) = p,,
at several values of N and carrying out a least-squares regression to the
Ansatz (5.4), one can in principle estimate y (and also A4, but not u). Again,
we are unsure of the quality of these estimates; it is not hard to compute
the variance of the estimator §, and we hope to do so in the near future.
Finally, we note that the random variables 4, and B are less “global”
than the observables we have been studying in this paper (such as w3
and S%), since the intersection or not of two SAWSs is most strongly
influenced by the behavior of those SAWSs near the joining point. Thus, it is
quite possible that the autocorrelation times 7, ,, and 7, 5 in the standard
pivot algorithm will have a critical exponent ¢ that is larger than that
found for global observables. If true, this would significantly degrade the
efficiency in estimates of 4 and y. On the other hand, the probabilities p,,
D1 Py for choosing the pivot location are free parameters in the pivot
algorithm: while we have heretofore chosen a uniform distribution p, = 1/N,
other distributions are permissible and might be advantageous in certain
circumstances. In particular, the autocorrelation time of the observables 4,
and B might be reduced by choosing these probabilities so as to focus
efforts near the joining point(s), e.g, p,~(N—i)~* for some exponent
x>0. One could then empirically determine the optimal value of x. (On
the other hand, the use of k#0 would probably increase the
autocorrelation time for conventional global observables such as w3, and
§%. So one would either have to choose a compromise value of «, or else
perform separate runs for estimating v and for estimating g and y.)

164 Madras and Sokal

5.3. Estimation of A, and a Test of Hyperscaling

Let oY) and o' be, respectively, N,-step and N,-step SAWs, and
define T(w'", ™) to be the number of translates of »® that somewhere
intersect w'!:

T(o", 0@)=#{xeZ% 0 N (0P +x)# T} (5.52)
- #(w(1)~w(2)) (5.5b)

where A —B={y—z: yeA,zeB}. The expected value of T(w™), »®),
averaging over independent walks " € %, and 0@ e H,, is ¢y, ny/Cn, C ;-
This quantity has the asymptotic behavior

ch,Nz/chcNZNN%A‘tiyh(Nl/NZ) (56)

where £ is a scaling function [see (2.9)]. It is thus possible to estimate the
critical exponent 24, — y by running two independent pivot algorithms and
measuring T(w", »?). (Typically one would run at N,=N,=N for a
sequence of values of N.) In particular, this allows a direct Monte Carlo
test of the hyperscaling relation dv=24,—y, which plays a central role in
quantum field theory.®®® (Note that an independent measurement of y is
not needed.)

The efficient determination of T(w*, ®®) for a specified pair of walks
(@™,) is a very interesting and nontrivial problem in computer science.
We see two broad approaches:

1. Deterministic algorithms which compute T(w‘, »®) exactly.

2. Monte Carlo algorithms which produce an unbiased (or almost
unbiased) estimator of T(w'", ®®).

We discuss each of these approaches in turn.

Deterministic Algorithms. A straightforward method for determining
T(w", 0®) is to compute x =w{*) —w{ for each of the (N, + 1)(N,+1)
pairs (i, j), write these points x into a hash table (see Section 3.4), and
count how many distinct values of x are obtained. Unfortunately, this
requires a work of order N, N,, ie., order N* if N, = N, = N. By contrast,
we expect that one “effectively independent” sample of the pair (o', @®)
can be produced in a CPU time of order N (if 7, -~ N¥) or in any case
not much greater. So this algorithm would spend more time analyzing the
data than producing it'—and the overall computational complexity per
“effectively independent” sample would be increased from N to N2, thereby
nullifying the advantage of the pivot algorithm over previous!*'?
algorithms. (We remark, however, that it may be possible to devise deter-
ministic algorithms that are more efficient than this elementary one.)

Monte Carlo Algorithm for Self-Avoiding Walk 165

Monte Carlo Algorithms. An alternative approach is to estimate
T(0", ®®) using an auxiliary Monte Carlo algorithm. The statistical
fluctuations in this auxiliary Monte Carlo would then be added to those in
the main Monte Carlo program; but this is acceptable provided that the
former are comparable to or smaller than the latter.

An elegant Monte Carlo algorithm for estimating T{w, ®*) (and
somewhat more general combinatorial problems) has been devised by
Karp and Luby,”* as we now briefly explain. Let S;,..., Sy be a collection
of sets, each of cardinality M, and suppose we want to estimate the
cardinality of S*=U~ | S,. [In our case, N=N,+1, M=N,+1, ;=
{o —w®: j=0,.,N,}for I<i< N, +1,and (0", @)= #(5*).] To
get an unbiased estimator Z of # (S*), we execute the following algorithm:

1. Choose i€ {1,.., N} at random, and then choose x € S, at random.

[In our case, we take x = (" —w{”), where j is chosen at random
from {0,.., N,}.] Set r=1.

2. Choose ke {1,.., N} at random.

3. If xeS§,, then go to step 4. If x¢ S,, then increment ¢ by 1 and go
to step 2.

4, Put Z= Mt
Then E(Z) = T(@w", ®'?) because

N
E(Z)=M) E(t|xisinexactly / of the sets S,..., Sy)
=1
x Prob(x is in exactly / of the sets S4,..., Sy)

Yy i": (N)(l # {x: x is in exactly / of the sets S,..., SN}>
AV NM

= #(S%) (5.7)

Here we used the fact that

k-1
Prob(z=k|xis in exactly / of the sets S|,...,) :% (1 -~ }%) (5.8)

Similarly, the variance of the random variable Z can be computed; it
depends on the overlap structure of the sets S,,..., Sy, but lower and upper
bounds are

#(S*)N#(S*)—M] < var(2)
S[2MN— #(S*)J[#(S*)—M] (59a)
<2MN #(S5*) (5.9b)

166 Madras and Sokal

Note that, using a hash table, each step in this algorithm can be performed
in a time of order 1; thus, the total run time of the algorithm is of order
t=2Z/M, which on average is #(S*)/M.

The idea is now to repeat this basic algorithm R times for the same
pair (0", ®?@), where R is a suitably chosen number, and to estimate T'=
T(w, ®®) by the sample mean

- 1 &
==) 2
R R rgl r
There are several alternative approaches, depending on how the number R
is chosen:

(a) The simplest approach is to let R be a fixed number [the same
for all pairs (0™, ®*)], chosen so that for “typical” pairs (0, ®®) the
relative standard deviation of Z is suitably small (say 20%). [In view of
(5.9b), it is sufficient to take R of order MN/# (S*)~ N? 24447 (A N2~ @
if hyperscaling holds).] Then, for some pairs (0'"), ®®) the number R will
be too small and the variance of Z, will be larger than desired, while for
other pairs the run-time ¢ will be too long and the variance of Z, will be
smaller than is really needed. But such pairs will hopefully be rare enough
so that neither the overall variance nor the overall run-time is adversely
affected.

(b) A “sequential-sampling” approach was proposed by Karp and
Luby™: here the basic algorithm is repeated until step 3 has been perfor-
med precisely CN times, where C is a chosen constant. Thus, R is a random
time defined as the largest number such that >?_ | Z, < CMN. In this case
Z is a biased estimator of T= T(w'", ®?), because R is correlated with
the data Z,,.., Z;. [The alternative estimators Z..,, CMN/R, and
CMN/(R+ 1) are also biased.] However, the bias can be bounded, and it
can be shown”* that using any of these four estimators, with a suitable

choice of C we can get an estimate Z satisfying
Prob(|Z—T|/T=¢)<é (5.10)

in a CPU time of order (N/e?)log(1/6). That is, the total amount of work
needed to get a “good” estimate of T is linear in N.

(c) The disadvantage (for our application) of the preceding approach
is its bias: though the bias can be made very small compared to the
statistical error, it must be remembered that the Karp-Luby algorithm is to
be used as a subroutine within the main Monte Carlo process, of which
many iterations will be performed-—and performing K iterations reduces
the statistical error by a factor KY? while the systematic error (bias)

Monte Carlo Algorithm for Self-Avoiding Walk 167

remains unaffected. Thus, if K is large (as it will be in a high-precision
study)}, the bias could overwhelm the statistical error. An alternative
scheme, which produces a strictly unbiased estimator, is a “two-sample” (or
“double sampling”) procedure'’®: one carries out an initial run using
method (b), in order to get a rough estimate T for T [and perhaps also a
rough estimate V for ¥ =var(Z)]; and one uses this estimate to choose the
number R for a second run, for example by R= CMN/T or R=CV/T?
The key fact is that only the data from the second stage are used in com-
puting the final estimator Zz; and since these data Z,,..., Z are indepen-
dent of the random variable R, it follows that Z is unbiased. Presumably
it can be arranged so that only a small fraction of the CPU time is
consumed (wasted) in the first stage. We intend to test this method if
method (a) turns out not to be adequate.

Thus, if the observable T(w'"’, »®) is sufficiently “global” so that 7,
is O(N?), then arguing as in Section 3.4, we see that the pivot algorithm
combined with the Karp—Luby algorithm can produce one “effectively
independent” estimate of ¢y y/c3 in a CPU time of order N.

5.4. New Algorithms

The moral to be drawn from the pivot algorithm is that certain types
of radically nonlocal moves can lead to extraordinarily efficient Monte
Carlo algorithms, if the acceptance fraction for these moves is not too small
(e.g., only a small inverse power of N) and the benefit from successful
moves is sufficiently great. In particular, the relatively high acceptance frac-
tion in the pivot algorithm is due to the fact that each of the two segments
of the walk to be pivoted is already known to be self-avoiding, and this fact
is preserved in the pivot process; as a result, self-intersections after pivoting
can come only from overlap between the two segments, and there is a
reasonable probability (~ N~7) that such overlap does not occur.

This reasoning leads one to ask whether other Monte Carlo
algorithms for the self-avoiding walk might be devised, based on similarly
nonlocal moves. One candidate for improved algorithms is the problem of
generating SAWs in the variable-N (grand canonical) fixed-endpoint
ensemble, as is needed for estimating efficiently the critical exponent o,
[see (2.3)]. The only currently available algorithm for this ensemble
(BFACF)“? has a rather long autocorrelation time. Numerical
experiments’® in d=2 show that 7, ,~ (N)>>*°£%* for the observables
A= N, N?, N°. Moreover, it can be proven rigorously”” that 7.,, = +o0 at
all activities f§ # 0. This latter result arises from the existence of very slow
modes associated with transitions ©— o’ that have Ad(w, ®')>

168 Madras and Sokal

max(|w|, |@']), where A(w, ®') is the minimum surface area spanned by the
union of w and '. This suggests, therefore, supplementing the BFACF
algorithm with nonlocal moves which are specifically designed to speed
up these slow modes. Caracciolo et al"™® are currently studying one
algorithm of this type, in which the BFACF moves are supplemented by
“cut-and-paste” moves, which cut the walk into two (ofmore) pieces, per-
mute and/or invert the pieces, and then reassemble them. (The “inversion”
of an N-step walk w is, by definition, the walk @& defined by &,;=
wy— wy_,;. Note that this operation preserves the end-to-end distance vec-
tor, i.e., Wy— Wy=®y— @,.) A heuristic argument similar to that in Sec-
tion 3.2 suggests that the acceptance fraction of such moves should behave
roughly as ~ N~ for some small, positive exponent r. On the other hand,
moves of this kind should be extremely effective in speeding up precisely
those transitions that are slow in the original BFACF algorithm. An
optimal combination of BFACF and “cut-and-paste” moves might,
therefore, yield an algorithm with a significantly smaller dynamic critical
exponent than the original BFACF algorithm. Algorithmic improvements
of this kind appear to be essential for high-precision Monte Carlo studies
of the critical exponent «g,, in the SAW.*)

APPENDIX A. SERIES ANALYSIS OF THE ACCEPTANCE
FRACTION

We computed the acceptance fractions f(g, k, N), by direct
enumeration, for SAWs on the square lattice (d=2) with N<17. The
results are reported in Table VIIL The final columns of Table VIII list the
integers a(g, k, N)=cy f(g, k, N). Note that a(g, k, N)=a(g, N—k, N), so
it suffices to list the values for 1 <k < N/2. The preceding column lists the
average of a(g, k, N) over k, namely

1 N—1

a(g,N)Eﬁ_—1 a(g, k, N) (A.1)
k=1

Data for the various group elements g are reported in rows marked 90°
Rotations, 180° Rotations, Axis reflections, and Diagonal reflections. The
row marked Group average is an average over the seven nonidentity
elements of the group. The row marked Heuristic is the heuristic estimate
(3.2). We remark that these enumerations required roughly 70 hr CPU
time on a VAX-11/785 computer, using a rather inefficient program and an
extremely inefficient FORTRAN compiler (the UNIX 77 compiler). An
earlier enumeration for N < 14 required slightly less than 2 hr CPU time.

169

Monte Carlo Algorithm for Self-Avoiding Walk

panuLIuo2 aqu [

‘PApUNOL 21B S[EUNOAP ‘Jowxs ase siadajuy,
et

¥'69 ¥'69 1424 onsunay
LS9 699 9Ly 99 afersae dnosn
9 9 0009 suonoa[Jal [euoder(
YL 8L L99°9L SUOLOBYJOI SIXY
9¢ 9¢ 00095 suone1oy ,081
¥9 ¥9 000'v9 suone1oy ,06
001 ="oy=N
0Le 000°LT onsUnoy
LsT vIL'ST s3e1aae dnoiny
144 Q00T suoud9jal feuoder(y
0¢ 000'0¢ SUOTIII[JaI SIXY
v 000'vC suonejoy ,081
174 000'%C suoneloy ,06
9g="o'g=N
06 0006 oNSLINOY
98 1LS°8 aFe10ae dnoin)
8 0008 suonoa[jel reuoderq
o1 00001 SUONA[JAI SIXY
8 0008 suone1oy ,081
8 000'8 SuONEI0Y 06
T1="T=N
8=y L= 9=2 S= v=y €= = = (N3
(N “y ‘8)p seouerdadoe jo sjieia(
»,89111e7 a1enbg ayl uo wylliobpy 10a1d 9yl 10} (N ‘¥ '6)4No= (N 'y ‘B)e siequinp 9ouerdaddy C|lIA dlqe)

Madras and Sokal

170

6'66v¢
6pSee
orbe
PoLE
8L
reve

eTve
L'Elee
vive
8ELE
0c1¢
9LEE

Po1¢el

evsel
88¢H
11841
0¥8
LTl

¥'69%
L'6vy
12514
90¢
96¢
9sy

TotLE
1'€19¢
2%
3601
09LT
y8SE

ev8el
r'eeel
0zeT
81¢1
9101
0zel

0°L0S
0v8y
08y
%Y
9LE
(214

L'981
L'LLT
9Ll
we
9¢l1
9L

¥'8C0%
L'LE6E
yrLE
9¢o%
9¢ee
pyLE

0TSt
9orl
4331
1472
9¢¢1
(4121

9'6es
9'0Ts
96t
019
ovy
96¥

9'10¢
L'e6l
V81
9¢¢
891
v81

08¢€°L69¢
(YA 43123
6C1e95¢
LS8'960%
1LS7899T
6ZY'LYSE

1sTeovl
L99°05€1
ceeeeel
EEELYST
£EL'LEOT
000°82¢e1

P16°015
TLLT6Y
00T°€8v
009°¢9¢
009°¢8¢
00918y

LT Y61
yIL681
000081
000v1¢C
00071
000081

SHSLNSY
dFeraae dnoin
SUONIYJaI [euode([
SUONOA[JOI SIXNY
suone10y 081
suone1oy 06

9165 ="2 '8 =N

NSNS
oferose dnoiny
wﬁomuooﬁou Mmcomme
SUONII3[JaI SIXY
suoneIoy 081
suoneloy ,06
wiT=""L=N

SNSLINOH
aFeioae dnoin
suornpayal [euoderg
SUOTIOd[Jal SIXY
suoneIoy 081
suoneIoy 06
08L="2"9=N

susunsy
93eroae dnoin
suonoayal [puos eIy
SUOLIIJJ21 SIXY
suone10y 081
suoneIoy ,06
v8T="o'¢=N

(pomaiuo)) "INA elqe}

17

Monte Carlo Algorithm for Self-Avoiding Walk

£'65985Y
0°098¢st
CLTCLY
£ 7489
80CS9T
9LIILY

G'8eSELT
I'1ploLT
89L9L1
8LEI6I
766101
°sesLl

SS8YI9Y
P'666LSY
CL8SLY
99CLIS
08¥69C
0CLELY

8I9TILI

6002691
ZE8SLT
LGIATY!
82666
0Cc6vLL

TTCES9
0'006£9
LTS
90¢L
9588t
88859

PeLive
0CLSET
(43444
W99¢
9LEY]
oveve

8'0S9LLY
PCoBILY
889.L8Y
0161ts
960£67
8858y

$'99¥8L1
9'9106LT
16081
$6L961
Pore01
0Z1081

¥'12999
1°181¢9
88CLS
woveL
9101y
9£699

SELovT
EYLIVT
9t6¥
811LT
yovel
(4174

9816

0C106
08¢C6
8¢10I1
918¢
9176

Srr6sy
6'991¢8Y
08005
8ECOVS
[43%103
(V1424414

£'082081
£TCO8LI
9L1V8T
81+10C
08v111
yrL181

LTP6L9
091599
80889
860SL
880CY
9$8L9

TTLYYT
[Yiza74
9LI1ST
TCSLT
[43391
(V2174

8Yvo

£9216
yeve
78c01
088¢
9626

8'70£8ES
¥ LOOTES
80T9CS
0LL509
9LS 10V
09L5CS

01661
P'6£0961
L4941
[4:38%44
8TEBYL
yoTrel

6'tCIvL
€8TLIL
8P0CL
81678
870SS
$T0CL

3PVOELT
1°6TL9T
0Ts9¢
8¢£0¢
920C
y0S9C

8'€ST01

16886
26L6
99¢T1
96vL
6L6

6'6v8L65
6057988
808556
905069
[458:117
8085¢S

1'9Tvele
VLTSSt
Y0EY0OT
201vsT
cLTesl
Oev0T

¥'0£0T8
9'0¥C08
PrI9L
05Ev6
30¥39
bri9L

0'L886C
11086t
808LT
11443
888YC
808LT

9'e]Ill

L'L6801
6e01
98LC1
P06
¢se0l

6LY'S9010¢
L999vEL6Y
LYY PSOL0S
000'80¥L9S
000v0L8EE
L99'86800¢

£81°¢6T881
£5L°06TS81
818'¢£6981
T8196E11T
ELTEO6LTT
000960981

LOT'80CIL
00T 11L69
000°¢I10L
000'9956L
00T'€806Y
009'69L69

PY8E9LYIT
£LB1S8ET
955°€T65T
£EE'6156¢
TT16Ly81
ITT°66LST

yL1°0T001
987°0¢EL6
000C1L6
000°8LIII
000vCIL
0007996

ONSLINILY
agesoae dnoin
SuonoIs[jal [eUOSRI(]
SUOI3[J31 SIXY
suone1oy 081
suone1oy .06
005188 ="2 €1 =N

SUSLNSY
afersae dnoiny
SuOI30oYaI jeuoseI
SHOI13[J21 SIXY
suone10y 081
suon®oy .06
TEGVTE =2 CI =N

ONSLINOY
aeroae dnoin
SUONORJoI USRI
SUONIO[JaL SIXY
suone0y 081
SuoneI0yY L06
WO =2 1T =N

SISLINSH
a3erea® dnoin
SUOIdYJol [euodeI(g
SUOTIOA[1 SIXY
suoneioy 081
suonei0y 506
001pr =201 =N

SUSLINSYH

9geraae dunoiny
SUOI199j21 [eu03RIq
SUOIIOA[JAI SIXY
suoneloy ,081
suoneloy .06

Madras and Sokal

172

6 1ELPEYTT
9TILYLITZ
8TS61LET
TTS8895¢C
91056TC1
9£6508¢LT

[a417%12]
L'T¥TOTS8
7S16068
0678796
0TL669Y
PPoEees

£e091vSTT
0'87906LTT
0891¢£8¢C
THrLEBST
112312441
9596L8€T

T1v891v8
9TIL96¥8
T16VL88
PE8BEGE
P0LS99Y
96¥0688

TEITYoTe
1'€6¥90Ct
[437A4%%
P0679¢
TOLY6LT
9688¥€E

66605611
16099611
bo9s¥el
opLESEL
[48% 72
[433244!

§°L98T10LT
£TP0TEC
TLOEITYT
$S005T9C
9ELIS0ET
PT09TTrT

P r68ST98
£0161998
P016£06
90£T8LE
887506V
TE9TY06

P SvLvPie
Y e60EvCe
y9T08EE
995599¢
0961681
YTTOLEE

Lzosicel

LLESTITT
964791
0£659¢1
96700L
8081921

0'8G9L6EET
6YLYI8SET
88Y8LSHT
0€€9€L9C
437483
89618vHT

0'98£50L8
£0LTYILE
¥869C16
PLI6EGE
967820S
091606

£'66£L82¢
6°CTLS8CE
selye
820CLE
8891061
TSSLOVE

€e1e0cCt

69818171
8YrLO9T1
78C08¢1
8TL90L
09975C1

L'950v6¥1T
6'06v0951T
9625 1ST
9BYILLT
0001L081
9609675C

L'62LC516

V'6559€16
¥818SY6
pL886C01
8095195
960116

00£LTTPE
£81160v¢
9L65TSE
QS {SP8E
0ce101c
8C1016¢

SYSr8LTl
6'05099C1
PP660¢E]
9TLSTY 1
07678L
8YOFOET

8'TST66TST
L'ETL8STST
L9192
0SETOS8T
89ELHLST
TO6SLLST

V'8651LE6

1'6¥569¢6
9S¥00L6
8LT11901
9SrreESS
095¥956

QILL6ISE
L'€56005¢
9LSSTIE
78L096¢
P8EL8IT
88TELSE

0'TZ610¢l
¥ SLSY6TT
8886£¢E]
P1osovl
0TLLOS
CSLITET

9'eYTIY08T
6'8189$8LL
087909LC
906L081¢
88Y0SOIT
9€65SSLT

0'E8SLEYOT

096£LP£01
T1659201
8LLOOBIT
Yov618L
¥920¥T01

L'S62268¢
6'3€6P$8¢
9¢£078¢
r66¢Y
Yree16t
9¢15T18¢E

S'6L65ry1
1'6018TrI
$869THI
TOPLI9T
¥T96L01
VRIVIPL

6'LTS00ELE
9'95EBLOL
88YP¥ 16T
0£TEYESe
v8L61Z9C
88Yr16¢

I'861L8611

PLYYLOVLL
00vL6L0T
9969LYET
00980L6
00vL6L0T

L'E86veey
L'6808STY
088¢£L0Y
9T61¢C0S
95TLT9E
0880V

IPL6BEST
6'+E9TLS T
08%68V1
[e 71331
0ov08¢ecl
086871

6%¥'901090$C MSNANETS
vILYPEa80ST aderear dnoipy
000'8€TP8SST SUOLIAYRI [euoder

005°TEETTI8T SUONII[YAI SIXY
000"8Y8ZL1I91 suoneIoy 081
000°TTLOTSST suonely .06

9L999Y9y =" L1=N
050°'50880%6 onsunoy
LIV'SLYT6t6 sfe1aae dnoin

€€L°€8TTY66 SUORdI[IaL [BUOFRI(]

000¥161L01 SUOI03[JAI SIXY
008'9£9£219 suoneloy 081
000'8¥9Y¢S6 SuOneI0y 06
TEESYTLI =N2 91 =N
PLL6TO8SSE SUnIH
0009169¢5¢ o8eroae dnoin
EPISPSE6SE suondafal [euoFeiq
vILSSorEQY SUOnOAJAI SIXY
987°90L6£ET suoneIoy 081
000TSTI8SE suoneloy .06
9659179 ="2 ST =N

160°0L0¢EET RIEISLE) S
cre'teciTel a8eroae dnoin
TETLSS6ECT suonoafjal [puodeIq
I 6LELOST SuoTIGa(jaL SIXY
8€SL66788 SuoneIoy ,081
OP]'GRLYECT SuonRIOY 06

PorbLET="2 Y =N

{(panuuoD) “NIA dl9eL

Monte Carlo Algorithm for Self-Avoiding Walk 173

We analyzed these series by the ratio method with Neville-Aitken
extrapolants, having first performed an Euler transformation

y=(1+a)z/(1 +az) (A.2)

to reduce the effect of even—odd oscillations. More information on these
series-extrapolation methods can be found in Refs. 80 and 81. These com-
putations were carried out using the program NEVBARB, graciously sup-
plied by Tony Guttmann. Our goal in these analyses is to estimate the
critical exponent p for the acceptance fraction, defined by f~N~7 as
N — o0. Series extrapolation is, of course, a notoriously tricky and subjec-
tive business. Qur exponent estimates are 95% subjective confidence inter-
vals, but are based solely on the internal consistency of the data from the
given series, not on their physical plausibility or compatibility with
estimates based on other series or on Monte Carlo data. In order to be fair,
we report the full Neville-Aitken tables and invite the reader to form his or
her own estimates.
In Tables IX-XIII we report the results of an analysis of the series

1 N—-1
/g N)=]—V—_—1k§1 f(g k., N) (A.3)

for the various group elements g. We show the first-, second-, and third-
order Neville-Aitken extrapolants pV), p@ and p!* for the values x=0.3,
0.4 of the Euler-transform parameter. (For « <03 the even-odd
oscillations are rather severe, and stable estimates of p cannot be made.)
The bottom entry in each column is the average of the last five entries
(13<N<17), and the error bar is twice the spread of these entries. We
consider this bottom entry to be a crude but objective measure of the
“final estimate” to be obtained from the given column of extrapolants alone
(i.c., without making further extrapolations), and of its “internal stability.”
However, it should not be taken blindly as an estimate of p, particularly if
the extrapolants are monotonic: in this case, the true value of p is most
likely located beyond the last extrapolant (as a higher-order extrapolant
would no doubt reveal), and the “error bar” is likely to be a gross
underestimate.

First we analyze the scries for f(g, N) averaged over the seven group
elements g; the results are shown in Table IX. For « = 0.3 the second-order
extrapolant is monotonic increasing, with weak even—odd oscillations; all
we can say is that p = 0.172. The third-order extrapolant is roughly stable,
but with strong even-odd oscillations; we can make only the very rough
estimate p=0.18 +0.05. For « =04 the even—odd oscillations are much
weaker, but the convergence is slower (as expected); the second- and third-

174 Madras and Sokal

Table IX. Neville-Aitken Table for Group-Averaged Acceptance Fraction®

a=0.3 =04
" P P Y P Y Y
3 0.2308 0.2857
4 01067 —0.0174 00990 —0.0876
5 00675 —00110 —0.0077 0.0691 0.0092 0.0576
6 0.0948 0.1767 0.3644 0.0880 0.1447 0.2803
7 0.0922 00819 —0.0603 0.0906 0.1008 0.0348
8 0.1039 0.1622 0.3228 0.0989 0.1408 0.2210
9 0.1082 0.1343 0.0644 0.1047 0.1394 0.1360
10 0.1146 0.1589 0.2329 0.1104 0.1503 0.1827
1 0.1188 0.1524 0.1294 0.1151 0.1528 0.1615
12 0.1231 0.1618 0.1992 0.1193 0.1573 0.1757
13 0.1266 0.1619 0.1623 0.1231 0.1603 0.1733
14 0.1299 0.1665 0.1896 0.1264 0.1634 0.1789
15 0.1328 0.1680 0.1761 0.1295 0.1659 0.1797
16 0.1355 0.1705 0.1861 0.1322 0.1682 0.1818
17 0.1380 0.1721 0.1818 0.1347 0.1701 0.1827
0.133 0.168 0.179 0.129 0.166 0.179
+0.023 +0.020 +0.055 +0.023 +0.020 +0.019

2 Bottom entry in each column is average of the last five entries; error bar is twice the spread
among these entries.

order extrapolants yield p=0.170 and p = 0.183, respectively. Overall, a
fair estimate would probably be p=0.18 1 0.04.

Next we turn to the estimates for particular group elements g. For 90°
rotations, the Neville-Aitken extrapolants (Table X) behave qualitatively
very much like those for the group average, but the numerical value of p is
lower; we estimate p=0.1454+0.04. Likewise, for axis reflections
(Table XI) and diagonal reflections (Table XII), we find a very similar
qualitative behavior, and estimate p=10.175+0.04 and p=10.16510.045,
respectively. All these group elements give roughly agreeing estimates for p,
in the range ~0.15-0.18. For 180° rotations (Table XIII), however, the
estimates are radically different: though not well stabilized, the extrapolants
suggest a much higher value for p, around 0.41.

At first we did not know what to make of this estimate. Does each
group element have a distinct critical exponent p? On theoretical grounds,
one would expect not. Moreover, all the series except the 180° rotations are
at least consistent with having the same exponent p. But it is hard to

Monte Carlo Algorithm for Self-Avoiding Walk 175

Table X. Neville-Aitken Table for Acceptance Fraction for 90° Rotations?

a=0.3 a=04
n w0 Y P 2 Py Y
3 0.2308 02857
4 00615 —0.1077 00571 —0.1714
5 00390 ~0.0061 0.0447 0.0399 0.0053 0.0936
6 0.0642 0.1398 0.2856 0.0584 0.1139 02226
7 0.0646 00660 —0.0446 0.0627 0.0800 00292
8 0.0750 0.1269 0.2487 0.0707 0.1105 0.1715
9 0.0792 0.1048 0.0495 0.0761 0.1089 0.1047
10 0.0851 0.1259 0.1892 0.0814 0.1183 0.1466
11 0.0890 0.1204 0.1013 0.0858 0.1206 0.1285
12 0.0929 0.1283 0.1596 0.0896 0.1245 0.1401
13 0.0961 0.1279 0.1266 0.0930 0.1268 0.1370
14 0.0991 0.1317 0.1505 0.0960 0.1292 0.1414
15 0.1017 0.1330 0.1397 0.0987 0.1312 0.1424
16 0.1041 0.1353 0.1493 0.1012 0.1332 0.1448
17 0.1062 0.1367 0.1460 0.1034 0.1349 0.1461
0.101 0.133 0.142 0.098 0.131 0.142
+£0020 +0018 +0048 +0021 +0016 +0.018

7 Bottom entry in each column is average of the last five entries; error bar is twice the spread
among these entries.

Table XI. Neville-Aitken Table for Acceptance Fraction for Axis Reflections”

x=03 a=04
n p(nl) LZ) pf’) le) pLZ) LS)
3 0.2308 0.2857
4 0.1231 0.0154 0.1143 —00571
5 00752 —00204 —0.0384 0.0776 0.0041 0.0347
6 0.1071 0.2026 0.4257 0.0993 0.1645 0.3250
7 0.1023 00833 —0.0957 0.1009 0.1075 0.0220
8 0.1129 0.1656 0.3301 0.1082 0.1446 0.2189
9 0.1162 0.1358 0.0615 0.1130 0.1418 0.1347
10 0.1213 0.1575 0.2226 0.1177 0.1503 0.1759
i 0.1245 0.1500 0.1235 0.1214 0.1512 0.1544
12 0.1279 0.1580 0.1903 0.1247 0.1546 0.1678
13 0.1305 0.1574 0.1545 0.1276 0.1565 0.1653
14 0.1331 0.1613 0.1807 0.1302 0.1588 0.1705
15 0.1354 0.1623 0.1680 0.1326 0.1608 0.1714
16 0.1374 0.1645 0.1776 0.1347 0.1626 0.1734
17 0.1393 0.1657 0.1737 0.1367 0.1641 0.1743
0.135 0.162 0.171 0.132 0.161 0.171
+0.018 +0.017 +0.052 +0.018 +0015 +0.018

¢ Bottom entry in each column is average of the last five entries; error bar is twice the spread
among these entries.

822/50/1-2-12

176 Madras and Sokal

Table Xii. Neville-Aitken Table for Acceptance Fraction for Diagonal
Reflections®

=03 x=04
n o @ Py P @ pasl
3 0.2308 0.2857
4 0.0615 -0.1077 0.0571 ~0.1714
5 0.0390 —0.0061 0.0447 0.0399 0.0053 0.0936
6 0.0583 0.1163 0.2387 0.0537 0.0952 0.1852
7 0.0582 0.0576 —0.0304 0.0567 0.0688 0.0292
8 0.0700 0.1287 0.2710 0.0654 0.1087 0.1885
9 0.0753 0.1074 0.0539 0.0718 0.1104 0.1145
10 0.0823 0.1317 0.2047 0.0782 0.1225 0.1590
11 0.0873 0.1273 0.1118 0.0835 0.1265 0.1404
12 0.0924 0.1374 0.1780 0.0884 0.1322 0.1552
13 0.0966 0.1389 0.1457 0.0928 0.1363 0.1546
14 0.1006 0.1445 0.1721 0.0967 0.1405 0.1612
15 0.1041 0.1469 0.1604 0.1004 0.1439 0.1630
16 0.1074 0.1503 0.1706 0.1037 0.1470 0.1658
17 0.1104 0.1525 0.1672 0.1068 0.1497 0.1673
0.104 0.147 0.163 0.100 0.143 0.162
+0.028 +0.027 +0.053 +0.028 +0.027 +0.025

“ Bottom entry in each column is average of the last five entries; error bar is twice the spread
among these entries.

Table XIIt. Neville-Aitken Table for Acceptance Fraction for 180° Rotations®

o=0.3 a=04
no) o L) o o
3 0.2308 0.2857
4 0.2462 0.2615 0.2286 0.1714
5 0.1724 0.0250 —0.0933 0.1749 0.0674 0.0154
6 0.2158 0.3461 0.6672 0.2038 0.2907 0.5140
7 0.2119 0.1963 —0.0285 0.2084 0.2269 0.1311
8 0.2338 0.3434 0.6378 0.2242 0.3030 0.4553
9 0.2428 0.2966 0.1794 0.2357 0.3047 0.3090
10 0.2556 0.3450 0.4902 0.2472 0.3275 0.3958
11 0.2648 0.3383 0.3148 0.2571 0.3363 0.3673
12 0.2741 0.3584 0.4390 0.2662 0.3482 0.3957
13 0.2822 0.3627 0.3821 0.2745 0.3571 0.3970
14 0.2898 0.3738 0.4293 0.2821 0.3658 0.4096
15 0.2967 0.3789 0.4067 0.2891 0.3730 0.4124
16 0.3030 0.3852 0.4234 0.2955 0.3792 0.4163
17 0.3088 0.3895 0.4172 0.3014 0.3844 0.4181
0.296 0.378 0.412 0.289 0.372 0.411
+0.053 +0.054 +0.095 +0.054 +0.055 +0.042

“ Bottom entry in each column is average of the last five entries; error bar is twice the spread
among these entries.

Monte Carlo Algorithm for Self-Avoiding Walk 177

reconcile p=x0.15-0.18 with p~041. As explained in Section 3.2, one
would expect the acceptance fraction for 180° rotations to be smaller than
that for other group elements; but, by standard ideas about universality,
one would normally expect this to affect the amplitude and not the critical
exponent. See, however, Section 4.2 for Monte Carlo data that support
these surprising estimates.

We also performed an analysis of the series a(g, N} defined in (A.1);
this analysis yields estimates of the critical exponent y— p. We form
“biased” approximants using the current best estimate®*®? u=
2.638155 4+ 0.000004, and we use the believed exact value®®® y=43/32=
1.34375 to infer estimates for p. These estimates of p turn out to be con-
sistent with those obtained by direct analysis of f(g, N); we get p=x
0.15-0.19 for all group elements except 180° rotations. However, the
estimates based on a(g, N) are somewhat more stable than those based on
f(g, N), a result we consider rather surprising, since one might expect the
a(g, N) and the ¢, to contain irregularities which would partially cancel in
forming the ratio f(g, N)=a(g, N)/cy. We thus consider the apparent
greater stability of the estimates from a(g, N) to be a fluke, which should
not be taken too seriously.

APPENDIX B. BOUNDS ON THE EIGENVALUES OF THE PIVOT
ALGORITHM FOR ORDINARY RANDOM WALK

In this appendix we prove lower and upper bounds on the next-to-
leading eigenvalue A, in the pivot algorithm for ordinary random walk in
arbitrary dimension d. Recall that the case d =2 was analyzed exactly in
Section 3.3, with the result A,=1—0(1/N). We show here that this
behavior continues to hold in general dimension 4.

The lower bound A,(P)>1-—0O(1/N) is a consequence of an easy
variational (Rayleigh-Ritz) argument using the trial function a,; see (3.7).

On the other hand, let G be the group of symmetries of the lattice. Let
v be a fixed vector which is the vector difference of two neighboring lattice
points [e.g, in Z? we can take v=(1,0,.,0)]. Then, to any ordered
N-tuple (g, g5, &) of elements of G, we can associate a lattice walk
W= (g, Oy, Op) DY

wy=0 (B.1a)
W=+ £8,83 8 for 1<i<N (B.1b)

Denote this walk @ by W(g;,..., gy). This map W from G" to the set %, of

N-step walks is not one-to-one, but it is onto. {In fact, W is precisely
[297Y(d—1)!]"-to-one. }

178 Madras and Sokal
Let w=W(g,,.., gn) be a given walk. Suppose we choose to pivot at

w, by the symmetry 4 e G. The resulting walk o' = (wy,..., w)y) satisfies
W =w; for i<k (B.2a)

Wi — = hw,— ;) for i>k (B.2b)
On the other hand, if we define g; , , by
Chr1=(8182- 8 " hg 182 8 Bran (B.3)

then the walk = W(g,,..., 8x> i+ 1> €k 1 25> &n) Satisfies
;= W, for i<k (B.4a)
@

D;=@;_ 1 +hg 182 G Gurr &V for i>k (B.4b)

Therefore, &,—®;, =h(w,—w,_,) for all i>k, and so @,—d,=
h(w;— w,) for all i> k. It follows from (B.2) that o' = @.

Thus, the random process of successive pivots induces a Markov chain
{Uq, Uys.} with state space GV. The transition probability from
Egl’;.)..,'gﬂl,..., gn) 10 (815 8hi1ss &) 18 pu/N, where h is defined by

3), e,

h=(g &) 81 8eii(g &) (B.5)

and p, is the probability of choosing to pivot by symmetry operation .
Therefore, if the {p,},. ¢ satisfy

Py=DPpp foral o, feG (B.6)

(this is usually the case in practice), then the transition probability p,/N
does not depend on {g;},.s,;. Thus, assuming (B.6), the transition
probability matrix for this Markov chain is of the form

1

S 3 @R@IEN (B.7)

i

13:

1=

where I is the |G| x |G| identity matrix and R is a fixed |G| x |G| symmetric
stochastic matrix

R={p(g—>g)}=1{pye1}

It follows that A,(P)=1— O(1/N) under assumption (B.6).

Monte Carlo Algorithm for Seif-Avoiding Walk 178

The above Markov chain {U,} on G" is related to the pivot-algorithm
chain {X,} on %, by X,=W(U,). It follows that 4,(P) < 1,(P):

3 cov,.(g(Xo), g(Xy))
AP)= S0 T (g(Xo)

sup cov:(g(W(U,)), g(W(U,)))

g% 0 var;(g(W(U,)))

sy SV W), /(U)

f#£0 var;(f(U,))

= J,(P) (B.8)

~

where 7 is the uniform measure on G".

In conclusion, we have proven [subject to the condition (B.6)] lower
and upper bounds on 4,(P) of the form 1 — O(1/N), and hence lower and
upper bounds on t,,, of order N.

APPENDIX C. STATISTICAL METHODS

In this paper we have for the most part followed standard methods of
statistical time-series analysis; for an excellent exposition, see the books of
Priestley® and Anderson.® In this appendix we summarize these
methods briefly.

Let {4,} be a real-valued stationary stochastic process with mean

=45 (C.1)
unnormalized autocorrelation function
Clt)y=<A, A, > — i’ (C.2)
normalized autocorrelation function
p(1) = C(1)/C(0) (C3)

and integrated autocorrelation time

=5 Y pl0) (C4)

Our goal is to estimate u, C(t), p(¢), and 1, based on a finite (but large)
sample A4,,.., 4, from this stochastic process.

180 Madras and Sokal
The “natural” estimator of u is the sample mean

A=-Y 4, (C.5)

1

X~
=

1

This estimator is unbiased (i.e., (A) =p) and has variance

"il (1 —-'2—') (1) (C.6a)

1= —(n—1)

(21,,) C(0) for n»1 (C.6b)

~
~

[see (2.19) and what follows it for discussion]. Thus, even if we are
interested only in the static quantity p, it is necessary to estimate the
dynamic quantity t,,, in order to determine valid error bars for u.

The “natural” estimator of C(t) is

- L
CH)=—= 3 (A= u)(4is 1y~ 1) (C7)
n— lt, i=1
if the mean pu is known, and

2 1 -

Y (A= A) 4y~ A) (C8)

if the mean p is unknown. We emphasize the conceptual distinction
between the autocorrelation function C(t), which for each ¢ is a number,
and the estimator C(¢) or C(t), which for each ¢ is a random variable. As
will become clear, this distinction is also of practical importance. C(¢) is an
unbiased estimator of C(¢), and C(¢) is almost unbiased (the bias is of
order 1/n) (Ref. 84, p.463). Their variances and covariances are (Ref. 84,
pp. 464-471, or Ref. 83, pp. 324-328)

var(é(t))=% i [Cm)*+ C(m+1t) C(m—1)
+ x(t, m,m+t)]+o<—’1;) (C.9)
cov(C(¢), C’(u))=% i [Cm)yCm+u—1t)+ C(m+u) C(m—1)

n

+ x(t, m,m+u)]+0(1> (C.10)

Monte Carlo Algorithm for Self-Avoiding Walk 181

[#,u=0], where k is the connected four-point autocorrelation function

K(r, 5 t)E <(Ai_#)(Ai+r—#)(Af+s~ﬂ)(Ai+t“/‘)>
—C(r)C(t—s5)—C(s) C(t —r)—C(t) C(s—r) (C.11)

To leading order in 1/n, the behavior of ¢ is identical to that of C.
The “natural” estimator of p(f) is

()= C(1)/C(0) (C.12)
if the mean u is known, and
A(0)=C(1)C(0) (C.13)

if the mean y is unknown. The variances and covariances of (z) and j(z)
can be computed (for large) from (C.10); we omit the detailed formulas.
The “natural” estimator of t;,, would seem to be

Y) (C.14)

(or the analogous thing with p), but this is wrong! The estimator defined in
(C.14) has a variance that does not go to zero as the sample size n goes to
infinity (Ref. 83, pp. 420-431); so it is clearly a very bad estimator of 7,,.
Roughly speaking, this is because the sample autocorrelations (¢} for
|| >t contain much “noise” but little “signal”; and there are so many of
them (order n) that the noise adds up to a total variance of order 1. (For a
more detailed discussion, see Ref. 83, pp. 432-437.) The solution is to cut
off the sum in (C.14) using a “window” A(z) that is ~1 for |z] <t but ~0
for |t] » t:

n—1

{
fm =5 Y AN p) (C.15)

= —(n—1)

This retains most of the “signal,” but discards most of the “noise.” In
particular, we use the rectangular window

Ui <M
M’)‘{o it > M (C.16)

where M is a suitably chosen cutoff. This cutoff introduces a bias

bias(fim)=—% Y p(t)+o(%> (C.17)

[t >M

182 Madras and Sokal
On the other hand, the variance of 1, can be computed from (C.10); after
some algebra, one obtains

22M+1)
n

var(fi,) ~ T (C.18)
where we have made the approximation t € M < n. The choice of M is thus
a tradeoff between bias and variance: the bias can be made small by taking
M large enough so that p(z) is negligible for [¢] > M (e.g., M =a few times ¢
usually suffices), while the variance is kept small by taking M to be no
larger than necessary, consistent with this constraint. We have found the
following “automatic windowing” algorithm‘’5%>) to be convenient: choose
M to be the smallest integer such that M > ct,,,(M). If p(z) were roughly a
pure exponential, then it would suffice to take cx4 (since e *<2%).
However, in our case p(z) is expected to be very slowly decaying (see
Section 3.3)—and this is in fact observed—so in this paper we have taken
c¢=10. We find that p(M)~0.01-0.02, so we expect our estimates of t;,, to
be systematically low by a few percent.

Thus, the standard deviations in Table II are given by (C.6b), with the
estimated values 7,,, and C(0) replacing the theoretical ones. Similarly, the
standard deviations in Table IV are given by (C.18), with £, replacing 7,
on the right-hand side. The one exception to these rules is the column
{(S3>/{w?%) in Table II. To determine the error bar for {3)>/{w?), one
needs to know not only the variances of the estimates (S%) and {w?),
but also their covariance. This covariance could in principle be determined
by analyzing ((w3),, (S%),) as a bivariate time series, using the appropriate
generalization of (C.5)-(C.18). However, we were lazy: we just set worst-
case error bars on {S5%>/{w?%) by using the triangle inequality. This
amounts to assuming that the estimates (S%) and (w3) are perfectly
anticorrelated, which is far from the truth—in fact, they are strongly
positively correlated. Thus, the stated error bars on (S%)/{w?%) are likely
to be several times too large, and this is in fact borne out by our
regressions (Sections 4.2 and 5.1).

ACKNOWLEDGMENTS

We thank Juan Freire, Tony Guttmann, Naeem Jan, Michael Luby,
and Chee Yap for helpful conversations and correspondence. Tony
Guttmann deserves special thanks for helping with the series analysis
reported in Appendix A.

The numerical computations reported here were performed at the

Monte Carlo Algorithm for Self-Avoiding Walk 183

Academic Computing Facility of New York University. This research was
supported in part by NSF grants DMS-8400955, DMS-8504033, and
PHY-8413569.

NOTE ADDED IN PROOF

Benhamou and Mahoux®® have computed the universal ratio Y, =
lim,, , ,{(S%>/{w%> to second order in e¢=4—d, using direct renor-
malization methods. They find

17 £) 3
Yw’g_l“‘ag‘“zg + Ole)]
where
1 5 [2n 4 tlog(1 —u?) }
! TS ———— — ———1 —— __—_______d
=516 T 384 | 377 983 6& 132

=0.030628...

(The first-order term was found ecarlier in Refs. 87-89.) Three
extrapolations of this series are a priori equally plausible: the [2/0] Padé
approximant (i.c., naive substitution into the Taylor series), the [1/1] Padé
approximant, and the [0/2] Padé approximant. For ¢=1, 2 these give

(2/0] (111 10/2]
d=3 0.1598 0.1662 0.1601
d=2 0.1428 0.1662 0.1457

The [2/0] and [0/2] approximants agree fairly well with our Monte Carlo
estimates, but in our opinion this agreement is purely coincidental: the
large coefficient of the &* term (compared to the ¢ term) indicates that
second-order perturbation theory, however we may choose to extrapolate
it, is grossly unreliable for ¢ 2 1/3. This unreliability is reflected in the [1/1]
Padé approximant, which has a pole at ¢x0.34 and makes grossly
incorrect predictions at ¢=1,2. The unfortunate conclusion is that this
particular series is just too short/badly behaved to yield reliable infor-
mation.

We would like to thank Juan Freire and Marvin Bishop for pointing
out Ref. 86 to us.

184 Madras and Sokal

REFERENCES

W NS

o

10.

11.
12.

13.
14.
15.
16.

17.

18.
19.
20.
21.
22.
23.
24.

25.
26.

27.
28.
29.

30.

31.

32
33.
34.
35.
36.
37.

C. Domb, Adv. Chem. Phys. 15:229 (1969).

D. S. McKenzie, Phys. Rep. 27:35 (1976).

S. G. Whittington, Adv. Chem. Phys. 51:1 (1982).

P. G. de Gennes, Phys. Lett. 38A:339 (1972).

J. des Cloizeaux, J. Phys. (Paris) 36:281 (1975).

M. Daoud et al., Macromolecules 8:804 (1975).

V. J. Emery, Phys. Rev. B 11:239 (1975).

C. Aragio de Carvalho, S. Caracciolo, and J. Fréhlich, Nucl Phys. B 215[FS7]:209
(1983).

. R. Fernandez, J. Frohlich, and A. D. Sokal, Random Walks, Critical Phenomena, and

Triviality in Quantum Field Theory (Lecture Notes in Physics, Springer-Verlag, to
appear).

F. T. Wall, S. Windwer, and P. J. Gans, in Methods in Computational Physics, Vol. 1,
B. Alder, S. Fernbach, and M. Rotenberg, eds. (Academic Press, New York, 1963).

S. Redner and P. J. Reynolds, J. Phys. A 14:2679 (1981).

B. Berg and D. Foerster, Phys. Letr. 106B:323 (1981); C. Aragdo de Carvatho and
S. Caracciolo, J. Phys. (Paris) 44:323 (1983); C. Aragdo de Carvalho, S. Caracciolo, and
J. Frohlich, Nucl. Phys. B 215[FS77:209 (1983).

A. Berretti and A. D. Sokal, J. Stat. Phys. 40:483 (1985).

M. Lal, Molec. Phys. 17:57 (1969).

O. F. Olaj and K. H. Pelinka, Makromol. Chem. 177:3413 (1976).

B. MacDonald, N. Jan, D. L. Hunter, and M. O. Steinitz, J. Phys. A 18:2627 (1985).

D. L. Hunter, N. Jan, and B. MacDonald, J. Phys. 4 19:L543 (1986); K. Kelly, D. L.
Hunter and N. Jan, J. Phys. A 20:5029 (1987).

S. D. Stellman and P. J. Gans, Macromolecules 5:516 (1972).

S. D. Stellman and P. J. Gans, Macromolecules 5:720 (1972).

J. J. Freire and A. Horta, J. Chem. Phys. 65:4049 (1976).

J. M. Hammersley, Proc. Camb. Phil. Soc. 53:642 (1957).

J. M. Hammersley, Proc. Camb. Phil. Soc. 57:516 (1961).

M. Hammersley and D. J. A. Welsh, Q. J. Math. (Oxford) Ser. 2 13:108 (1962).
Kesten, J. Math. Phys. 4960 (1963).

. Kesten, J. Math. Phys. 5:1128 (1964).

. Slade, Commun. Math. Phys. 110:661 (1987).

J. G. Kemeny and J. L. Suell, Finite Markov Chains (Springer, New York, 1976).

M. Tosifescu, Finite Markov Processes and Their Applications (Wiley, Chichester, 1980).
K. L. Chung, Markov Chains with Stationary Transition Probabilities, 2nd ed. (Springer,
New York, 1967).

E. Seneta, Non-Negative Matrices and Markov Chains, 2nd ed. (Springer, New York,
1981).

M. Hamermesh, Group Theory and Its Application to Physical Problems (Addison-Wesley,
Reading, Massachusetts, 1962), Chapter 2.

J. Garcia de la Torre, A. Jiménez, and J. J. Freire, Macromolecules 15:148 (1982).

B. Nienhuis, J. Stat. Phys. 34731 (1984).

A. J. Guttmann, J. Phy. A 20:1839 (1987).

H. Saleur, J. Phys. A 19:L807 (1986).

B. Duplantier, Phys. Rev. B 35:5290 (1987).

D. E. Knuth, The Art of Computer Programming, Vol. 3 (Addison-Wesley, Reading,
Massachusetts, 1973), Section 6.4.

I

H.
H
G

Monte Carlo Algorithm for Self-Avoiding Walk 185

38.

39.
40.
41.
42.
43.

44,
45.
46.
47.
48.

49.
50.

51.
52.
53.

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.

73.

74.

75.
76.
77.
78.
79.

E. Horowitz and S. Sahni, Fundamentals of Data Structures (Computer Science Press,
Potomac, Maryland, 1976), Section 9.3.

K. Suzuki, Buil. Chem. Soc. Japan 41:538 (1968).

Z. Alexandrowicz, J. Chem. Phys. 51:561 (1969).

Z. Alexandrowicz and Y. Accad, J. Chem. Phys. 54:5338 (1971).

N. Madras and A. D. Sokal, in preparation.

D. Goldsman, Ph. D. thesis, School of Operations Research and Industrial Engineering,
Cornell University (1984).

L. Schruben, Op. Res. 30:569 (1982).

L. Schruben, Op. Res. 31:1090 (1983).

J. R. Baxter and R. V. Chacon, /ll. J. Math. 20:467 (1976).

D. J. Aldous, J. Lond. Math. Soc. 25:564 (1982).

D. Aldous, in Séminaire de Probabilités XVII (Lecture Notes in Mathematics No. 986,
Springer-Verlag, Berlin, 1983).

D. Aldous and P. Diaconis, Am. Math. Monthly 93:333 (1986).

W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed.
(Wiley, New York, 1968), pp. 224-225.

P. Grassberger, Z. Phys. B 48:255 (1982).

C. Domb and F. T. Hioe, J. Chem. Phys. 51:1915 (1969).

D. E. Knuth, The Art of Computer Programming, Vol.2, 2nd ed. (Addison-Wesley,
Reading, Massachusetts, 1973), pp. 102-103.

S. D. Silvey, Statistical Inference (Chapman and Hall, London, 1975), Chapter 3.

I. Majid, Z. V. Djordjevic, and H. E. Stanley, Phys. Rev. Lett. 51:1433 (1983).

J. Adler, J. Phys. A 16:L515 (1983).

Z. V. Djordjevic, I. Majid, H. E. Stanley, and R. J. dos Santos, J. Phys. A 16:1.519 (1983).
V. Privinan, Physica 123A:428 (1984).

A. J. Guttmann, J. Phys. A 17:455 (1984).

. C. Rapaport, J. Phys. A 18:1.201 (1985).

. C. Rapaport, J. Phys. A 18:113 (1985).

. Havlin and D. Ben-Avraham, Phys. Rev. A 27:2759 (1983).

. C. Rapaport, J. Phys. 4 18:L39 (1985).

. W. Lyklema and K. Kremer, Phys. Rev. B 31:3182 (1985).

. T. Wall and J. J. Erpenbeck, J. Chem. Phys. 30:637 (1959).

. Mandel, J. Chem. Phys. 70:3984 (1979).

. 'T. Wall and J. J. Erpenbeck, J. Chem. Phys. 30:634 (1959).

. K. Kron, Vysokomol. Soyed. 7:1228 (1965) [Polymer Sci. USSR 7:1361 (1965)].

. K. Kron et al, Molek. Biol. 1:576 (1967) [Molec. Biol. 1:487 (1967)].

F. T. Wall and F. Mandel, J. Chem. Phys. 63:4592 (1975).

N. Madras and A. D. Sokal, J. Star. Phys. 47:573 (1987).

E. Brézin, J-C. LeGuillou, and J. Zinn-Justin, in Phase Transitions and Critical
Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, London, 1976).

R. M. Karp and M. Luby, in 24th Annual Symposium on Foundations of Computer Science
(IEEE, New York, 1983), pp. 56-64.

R. M. Karp, M. Luby, and N. Madras, Monte-Carlo Approximation Algorithms for
Enumeration Problems, submitted to J. Algorithms.

A. Birnbaum and W. C. Healy, Jr., Ann. Math. Stat. 31:662 (1960).

S. Caracciolo and A. D. Sokal, J. Phys. A 19:L797 (1986).

A. D. Sokal and L. E. Thomas, in preparation.

S. Caracciolo, U. Glaus, and A. D. Sokal, in preparation.
S. Caracciolo and A. D. Sokal, J. Phys. 4 20:2569 (1987).

PErmmmEO Y g

186 Madras and Sokal

80. D. S. Gaunt and A. J. Guttmann, in Phase Transitions and Critical Phenomena, Vol. 3,
C.Domb and M. S. Green, eds. (Academic Press, London, 1974).

81. A.J. Guttmann, in preparation, to appear in Phase Transitions and- Critical Phenomena,
C. Domb and J. L. Lebowitz, eds. (Academic Press, New York).

82. 1. C. Enting and A. J. Guttmann, J. Phys. 4 18:1007 (1985).

83. M. B. Priestley, Spectral Analysis and Time Series (Academic Press, London, 1981).
84. T. W. Anderson, The Statistical Analysis of Time Series (Wiley, New York, 1971).
85. J. Goodman and A. D. Sokal, Phys. Rev. Lett. 56:1015 (1986).

86. M. Benhamou and G. Mahoux, J. Physique Lett. 46:1-689 (1985).

87. T. A. Witten and L. Schifer, J. Phys. 4 11:1843 (1978).

88. J. des Cloizeaux, J. Physique 42:635 (1981).

89. M. K. Kosmas, J. Phys. 4 14:2779 (1981).

